819 resultados para Machine learning.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a machine learning model that predicts a structural disruption score from a protein’s primary structure. SCHEMA was introduced by Frances Arnold and colleagues as a method for determining putative recombination sites of a protein on the basis of the full (PDB) description of its structure. The present method provides an alternative to SCHEMA that is able to determine the same score from sequence data only. Circumventing the need for resolving the full structure enables the exploration of yet unresolved and even hypothetical sequences for protein design efforts. Deriving the SCHEMA score from a primary structure is achieved using a two step approach: first predicting a secondary structure from the sequence and then predicting the SCHEMA score from the predicted secondary structure. The correlation coefficient for the prediction is 0.88 and indicates the feasibility of replacing SCHEMA with little loss of precision. ©2005 IEEE

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Prediction of peroxisomal matrix proteins generally depends on the presence of one of two distinct motifs at the end of the amino acid sequence. PTS1 peroxisomal proteins have a well conserved tripeptide at the C-terminal end. However, the preceding residues in the sequence arguably play a crucial role in targeting the protein to the peroxisome. Previous work in applying machine learning to the prediction of peroxisomal matrix proteins has failed W capitalize on the full extent of these dependencies. We benchmark a range of machine learning algorithms, and show that a classifier - based on the Support Vector Machine - produces more accurate results when dependencies between the conserved motif and the preceding section are exploited. We publish an updated and rigorously curated data set that results in increased prediction accuracy of most tested models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Traditionally, machine learning algorithms have been evaluated in applications where assumptions can be reliably made about class priors and/or misclassification costs. In this paper, we consider the case of imprecise environments, where little may be known about these factors and they may well vary significantly when the system is applied. Specifically, the use of precision-recall analysis is investigated and compared to the more well known performance measures such as error-rate and the receiver operating characteristic (ROC). We argue that while ROC analysis is invariant to variations in class priors, this invariance in fact hides an important factor of the evaluation in imprecise environments. Therefore, we develop a generalised precision-recall analysis methodology in which variation due to prior class probabilities is incorporated into a multi-way analysis of variance (ANOVA). The increased sensitivity and reliability of this approach is demonstrated in a remote sensing application.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Machine learning techniques for prediction and rule extraction from artificial neural network methods are used. The hypothesis that market sentiment and IPO specific attributes are equally responsible for first-day IPO returns in the US stock market is tested. Machine learning methods used are Bayesian classifications, support vector machines, decision tree techniques, rule learners and artificial neural networks. The outcomes of the research are predictions and rules associated With first-day returns of technology IPOs. The hypothesis that first-day returns of technology IPOs are equally determined by IPO specific and market sentiment is rejected. Instead lower yielding IPOs are determined by IPO specific and market sentiment attributes, while higher yielding IPOs are largely dependent on IPO specific attributes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper illustrates the prediction of opponent behaviour in a competitive, highly dynamic, multi-agent and partially observableenvironment, namely RoboCup small size league robot soccer. The performance is illustrated in the context of the highly successful robot soccer team, the RoboRoos. The project is broken into three tasks; classification of behaviours, modelling and prediction of behaviours and integration of the predictions into the existing planning system. A probabilistic approach is taken to dealing with the uncertainty in the observations and with representing the uncertainty in the prediction of the behaviours. Results are shown for a classification system using a Naïve Bayesian Network that determines the opponent’s current behaviour. These results are compared to an expert designed fuzzy behaviour classification system. The paper illustrates how the modelling system will use the information from behaviour classification to produce probability distributions that model the manner with which the opponents perform their behaviours. These probability distributions are show to match well with the existing multi-agent planning system (MAPS) that forms the core of the RoboRoos system.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Esta tese teve por objetivo saber como o corpo docente da Universidade Estadual de Mato Grosso do Sul (UEMS) percebe, entende e reage ante a incorporação e utilização das Tecnologias de Informação e Comunicação (TICs) nos cursos de graduação dessa Instituição, considerando os novos processos comunicacionais dialógicos que elas podem proporcionar na sociedade atual. Metodologicamente, a tese é composta por pesquisa bibliográfica, buscando fundamentar as áreas da Educação e Comunicação, assim como a Educomunicação; pesquisa documental para contextualização do lócus da pesquisa e de uma pesquisa exploratória a partir da aplicação de um questionário online a 165 docentes da UEMS, que responderam voluntariamente. Verificou-se que os professores utilizam as TICs cotidianamente nas atividades pessoais e, em menor escala, nos ambientes profissionais. Os desafios estão em se formar melhor esse docente e oferecer capacitação continuada para que utilizem de forma mais eficaz as TICs nas salas de aula. Destaca-se ainda que os avanços em tecnologia e os novos ecossistemas comunicacionais construíram novas e outras realidades, tornando a aprendizagem um fator não linear, exigindo-se revisão nos projetos pedagógicos na educação superior para que estes viabilizem diálogos propositivos entre a comunicação e a educação. A infraestrutura institucional para as TICs é outro entrave apontado, tanto na aquisição como na manutenção desses aparatos tecnológicos pela Universidade. Ao final, propõe-se realizar estudos e pesquisas que possam discutir alterações nos regimes contratuais de trabalho dos docentes, uma vez que, para atuar com as TICs de maneira apropriada, exige-se mais tempo e dedicação do docente.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The blood types determination is essential to perform safe blood transfusions. In emergency situations isadministrated the “universal donor” blood type. However, sometimes, this blood type can cause incom-patibilities in the transfusion receptor. A mechatronic prototype was developed to solve this problem.The prototype was built to meet specific goals, incorporating all the necessary components. The obtainedsolution is close to the final system that will be produced later, at industrial scale, as a medical device.The prototype is a portable and low cost device, and can be used in remote locations. A computer appli-cation, previously developed is used to operate with the developed mechatronic prototype, and obtainautomatically test results. It allows image acquisition, processing and analysis, based on Computer Visionalgorithms, Machine Learning algorithms and deterministic algorithms. The Machine Learning algorithmsenable the classification of occurrence, or alack of agglutination in the mixture (blood/reagents), and amore reliable and a safer methodology as test data are stored in a database. The work developed allowsthe administration of a compatible blood type in emergency situations, avoiding the discontinuity of the“universal donor” blood type stocks, and reducing the occurrence of human errors in the transfusion practice.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the context of the needs of the Semantic Web and Knowledge Management, we consider what the requirements are of ontologies. The ontology as an artifact of knowledge representation is in danger of becoming a Chimera. We present a series of facts concerning the foundations on which automated ontology construction must build. We discuss a number of different functions that an ontology seeks to fulfill, and also a wish list of ideal functions. Our objective is to stimulate discussion as to the real requirements of ontology engineering and take the view that only a selective and restricted set of requirements will enable the beast to fly.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes how the statistical technique of cluster analysis and the machine learning technique of rule induction can be combined to explore a database. The ways in which such an approach alleviates the problems associated with other techniques for data analysis are discussed. We report the results of experiments carried out on a database from the medical diagnosis domain. Finally we describe the future developments which we plan to carry out to build on our current work.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An overview of neural networks, covering multilayer perceptrons, radial basis functions, constructive algorithms, Kohonen and K-means unupervised algorithms, RAMnets, first and second order training methods, and Bayesian regularisation methods.