778 resultados para Machine Learning. Semissupervised learning. Multi-label classification. Reliability Parameter


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A resistência a múltiplos fármacos é um grande problema na terapia anti-cancerígena, sendo a glicoproteína-P (P-gp) uma das responsáveis por esta resistência. A realização deste trabalho incidiu principalmente no desenvolvimento de modelos matemáticos/estatísticos e “químicos”. Para os modelos matemáticos/estatísticos utilizamos métodos de Machine Learning como o Support Vector Machine (SVM) e o Random Forest, (RF) em relação aos modelos químicos utilizou-se farmacóforos. Os métodos acima mencionados foram aplicados a diversas proteínas P-gp, p53 e complexo p53-MDM2, utilizando duas famílias: as pifitrinas para a p53 e flavonóides para P-gp e, em menor medida, um grupo diversificado de moléculas de diversas famílias químicas. Nos modelos obtidos pelo SVM quando aplicados à P-gp e à família dos flavonóides, obtivemos bons valores através do kernel Radial Basis Function (RBF), com precisão de conjunto de treino de 94% e especificidade de 96%. Quanto ao conjunto de teste com previsão de 70% e especificidade de 67%, sendo que o número de falsos negativos foi o mais baixo comparativamente aos restantes kernels. Aplicando o RF à família dos flavonóides verificou-se que o conjunto de treino apresenta 86% de precisão e uma especificidade de 90%, quanto ao conjunto de teste obtivemos uma previsão de 70% e uma especificidade de 60%, existindo a particularidade de o número de falsos negativos ser o mais baixo. Repetindo o procedimento anterior (RF) e utilizando um total de 63 descritores, os resultados apresentaram valores inferiores obtendo-se para o conjunto de treino 79% de precisão e 82% de especificidade. Aplicando o modelo ao conjunto de teste obteve-se 70% de previsão e 60% de especificidade. Comparando os dois métodos, escolhemos o método SVM com o kernel RBF como modelo que nos garante os melhores resultados de classificação. Aplicamos o método SVM à P-gp e a um conjunto de moléculas não flavonóides que são transportados pela P-gp, obteve-se bons valores através do kernel RBF, com precisão de conjunto de treino de 95% e especificidade de 93%. Quanto ao conjunto de teste, obtivemos uma previsão de 70% e uma especificidade de 69%, existindo a particularidade de o número de falsos negativos ser o mais baixo. Aplicou-se o método do farmacóforo a três alvos, sendo estes, um conjunto de inibidores flavonóides e de substratos não flavonóides para a P-gp, um grupo de piftrinas para a p53 e um conjunto diversificado de estruturas para a ligação da p53-MDM2. Em cada um dos quatro modelos de farmacóforos obtidos identificou-se três características, sendo que as características referentes ao anel aromático e ao dador de ligações de hidrogénio estão presentes em todos os modelos obtidos. Realizando o rastreio em diversas bases de dados utilizando os modelos, obtivemos hits com uma grande diversidade estrutural.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents a low cost non-intrusive home energy monitor built on top of Non-Intrusive Load Monitoring (NILM) concepts and techniques. NILM solutions are already considered low cost alternatives to the big majority of existing commercial energy monitors but the goal here is to make its cost even lower by using a mini netbook as a whole in one solution. The mini netbook is installed in the homes main circuit breaker and computes power consumption by reading current and voltage from the built-in sound card. At the same time, feedback to the users is provided using the 11’’ LCD screen as well as other built-in I/O modules. Our meter is also capable of detecting changes in power and tries to find out which appliance lead to that change and it is being used as part of an eco-feedback platform that was build to study the long terms of energy eco-feedback in individuals. In this thesis the steps that were taken to come up with such a system are presented, from the basics of AC power measurements to the implementation of an event detector and classifier that was used to disaggregate the power load. In the last chapter results from some validation tests that have been performed are presented in order to validate the experiment. It is believed that such a system will not only be important as an energy monitor, but also as an open system than can be easily changed to accommodate and test new or existing nonintrusive load monitoring techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O presente trabalho teve como objetivo determinar quais variáveis dimensionais da folha são mais adequadas para utilização na estimativa da área foliar do antúrio (Anthurium andraeanum), cv. Apalai, por meio de equação de regressão linear, e comparar o desempenho de diferentes funções de regressão obtidas com o uso de aprendizado de máquina (AM). A variável que melhor estimou a área foliar foi o produto das dimensões lineares (comprimento e largura), CxL, sendo a equação proposta Af = 0.9672 *C x L, com coeficiente de determinação (R²) de 0,99. Verificou-se, também, com o uso de AM, que as funções lineares são mais adequadas para a estimação da área foliar dessa espécie vegetal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the most important goals of bioinformatics is the ability to identify genes in uncharacterized DNA sequences on world wide database. Gene expression on prokaryotes initiates when the RNA-polymerase enzyme interacts with DNA regions called promoters. In these regions are located the main regulatory elements of the transcription process. Despite the improvement of in vitro techniques for molecular biology analysis, characterizing and identifying a great number of promoters on a genome is a complex task. Nevertheless, the main drawback is the absence of a large set of promoters to identify conserved patterns among the species. Hence, a in silico method to predict them on any species is a challenge. Improved promoter prediction methods can be one step towards developing more reliable ab initio gene prediction methods. In this work, we present an empirical comparison of Machine Learning (ML) techniques such as Na¨ýve Bayes, Decision Trees, Support Vector Machines and Neural Networks, Voted Perceptron, PART, k-NN and and ensemble approaches (Bagging and Boosting) to the task of predicting Bacillus subtilis. In order to do so, we first built two data set of promoter and nonpromoter sequences for B. subtilis and a hybrid one. In order to evaluate of ML methods a cross-validation procedure is applied. Good results were obtained with methods of ML like SVM and Naïve Bayes using B. subtilis. However, we have not reached good results on hybrid database

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of the researches in artificial intelligence is to qualify the computer to execute functions that are performed by humans using knowledge and reasoning. This work was developed in the area of machine learning, that it s the study branch of artificial intelligence, being related to the project and development of algorithms and techniques capable to allow the computational learning. The objective of this work is analyzing a feature selection method for ensemble systems. The proposed method is inserted into the filter approach of feature selection method, it s using the variance and Spearman correlation to rank the feature and using the reward and punishment strategies to measure the feature importance for the identification of the classes. For each ensemble, several different configuration were used, which varied from hybrid (homogeneous) to non-hybrid (heterogeneous) structures of ensemble. They were submitted to five combining methods (voting, sum, sum weight, multiLayer Perceptron and naïve Bayes) which were applied in six distinct database (real and artificial). The classifiers applied during the experiments were k- nearest neighbor, multiLayer Perceptron, naïve Bayes and decision tree. Finally, the performance of ensemble was analyzed comparatively, using none feature selection method, using a filter approach (original) feature selection method and the proposed method. To do this comparison, a statistical test was applied, which demonstrate that there was a significant improvement in the precision of the ensembles

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The identification of genes essential for survival is important for the understanding of the minimal requirements for cellular life and for drug design. As experimental studies with the purpose of building a catalog of essential genes for a given organism are time-consuming and laborious, a computational approach which could predict gene essentiality with high accuracy would be of great value. We present here a novel computational approach, called NTPGE (Network Topology-based Prediction of Gene Essentiality), that relies on the network topology features of a gene to estimate its essentiality. The first step of NTPGE is to construct the integrated molecular network for a given organism comprising protein physical, metabolic and transcriptional regulation interactions. The second step consists in training a decision-tree-based machine-learning algorithm on known essential and non-essential genes of the organism of interest, considering as learning attributes the network topology information for each of these genes. Finally, the decision-tree classifier generated is applied to the set of genes of this organism to estimate essentiality for each gene. We applied the NTPGE approach for discovering the essential genes in Escherichia coli and then assessed its performance. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Redes neurais pulsadas - redes que utilizam uma codificação temporal da informação - têm despontado como uma promissora abordagem dentro do paradigma conexionista, emergente da ciência cognitiva. Um desses novos modelos é a rede neural pulsada com função de base radial, que é capaz de armazenar informação nos tempos de atraso axonais dos neurônios. Um algoritmo de aprendizado foi aplicado com sucesso nesta rede pulsada, que se mostrou capaz de mapear uma seqüência de pulsos de entrada em uma seqüência de pulsos de saída. Mais recentemente, um método baseado no uso de campos receptivos gaussianos foi proposto para codificar dados constantes em uma seqüência de pulsos temporais. Este método tornou possível a essa rede lidar com dados computacionais. O processo de aprendizado desta nova rede não se encontra plenamente compreendido e investigações mais profundas são necessárias para situar este modelo dentro do contexto do aprendizado de máquinas e também para estabelecer as habilidades e limitações desta rede. Este trabalho apresenta uma investigação desse novo classificador e um estudo de sua capacidade de agrupar dados em três dimensões, particularmente procurando estabelecer seus domínios de aplicação e horizontes no campo da visão computacional.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Duplex and superduplex stainless steels are class of materials of a high importance for engineering purposes, since they have good mechanical properties combination and also are very resistant to corrosion. It is known as well that the chemical composition of such steels is very important to maintain some desired properties. In the past years, some works have reported that γ 2 precipitation improves the toughness of such steels, and its quantification may reveals some important information about steel quality. Thus, we propose in this work the automatic segmentation of γ 2 precipitation using two pattern recognition techniques: Optimum-Path Forest (OPF) and a Bayesian classifier. To the best of our knowledge, this if the first time that machine learning techniques are applied into this area. The experimental results showed that both techniques achieved similar and good recognition rates. © 2012 Taylor & Francis Group.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Voice-based user interfaces have been actively pursued aiming to help individuals with motor impairments, providing natural interfaces to communicate with machines. In this work, we have introduced a recent machine learning technique named Optimum-Path Forest (OPF) for voice-based robot interface, which has been demonstrated to be similar to the state-of-the-art pattern recognition techniques, but much faster. Experiments were conducted against Support Vector Machines, Neural Networks and a Bayesian classifier to show the OPF robustness. The proposed architecture provides high accuracy rates allied with low computational times. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, organizations face the problem of keeping their information protected, available and trustworthy. In this context, machine learning techniques have also been extensively applied to this task. Since manual labeling is very expensive, several works attempt to handle intrusion detection with traditional clustering algorithms. In this paper, we introduce a new pattern recognition technique called Optimum-Path Forest (OPF) clustering to this task. Experiments on three public datasets have showed that OPF classifier may be a suitable tool to detect intrusions on computer networks, since it outperformed some state-of-the-art unsupervised techniques. © 2012 IEEE.