866 resultados para MUSCLE PROTEIN-SYNTHESIS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

o,p'-DDT is a major component of the pesticide DDT (dichlorodiphenyltrichloro ethane, technical grade). Although possessing little insecticidal ability, the o,p'- isomer has two major biological activities which affect mammalian reproductive systems: it is estrogenic, and it induces hepatic mixed function oxidase enzymes. The focus of this work is the characterization of the estrogenic properties of o,p'-DDT in rodents.^ Initial studies examined the ability of o,p'-DDT to bind to and interact with elements of the estrogen receptor system. In an in vitro assay, DDT was shown to compete with 17(beta)-estradiol (E(,2)) for binding to cytoplasmic estrogen receptors (R(,c)) from normal and neoplastic tissues in two rodent species. The following phenomena were studied by measuring receptor levels from uteri (whole uteri and/or uterine cell types) taken from immature ovariectomized rats given one acute injection of o,p'-DDT or E(,2): the translocation of the R(,c) to the nucleus, nuclear receptor (R(,n)) retention patterns, and the subsequent reappearance of R(,c) in the cytoplasm.^ The magnitude and temporal patterns of the biological responses of uteri from similar immature rats were compared following o,p'-DDT and E(,2) exposure. The responses examined included increased "Induced Protein" synthesis (in vitro); and uterine wet weight, DNA synthesis and mitosis (in vivo).^ From dose-response data, correlations were made between R(,n) levels and levels of subsequent biological responses. The aim was to lend support to the premise that biological responses to o,p'-DDT exposure occur as a result of its interaction with the classical estrogen receptor system. Correlation coefficients of 0.95 to 0.98 were obtained between R(,n) levels and levels of responses examined, strongly supporting this hypothesis.^ Finally, o,p'-DDT was shown to be as effective as E(,2) in supporting the growth of a transplantable estrogen-responsive mammary tumor in adult rats (although it was unable to support the growth of a transplantable estrogen-dependent renal tumor in hamsters). While the positive result cannot be directly extrapolated to human or animal exposure to environmental estrogens, it suggests that hyperplastic responses of estrogen sensitive tissues should be considered as a possible toxicity of o,p'-DDT, related compounds having estrogenic properties, and other environmental estrogens. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Several interactive parameters of protein-calorie malnutrition imposed during postnatal ontogeny on the myelination of rat brain wre investigated. Postnatal starvation depresses the rate of myelin protein synthesis to approximately the same extent in all major brain regions examined (cerebral cortex, cerebellum, striatum, hippocampus, hypothalamus, midbrain and medulla), indicating a relatively uniform reduction in myelination throughout the brain. Early starvation from birth through 8 days, as well as starvation occurring late, from 14 to 30 days, produced no lasting deficit in myelin accumulation. Starvation from birth through 14 days or from birth through 20 days produces lasting, significant myelin deficits in all brain regions when examined following ad libitum feeding to 60 days of age. These data, in combination with the metabolic studies of myelin synthesis, show that severe starvation occurring during the 2nd and 3rd weeks of postnatal life produces an immediate reduction in myelin synthesis, and that the subsequent deficit in myelin accumulation is irreversible by nutritional rehabilitation. With respect to the relative severity of nutritional restriction occurring during this "critical" interval of brain ontogeny, additional studies showed that mild undernourishment (producing less than 20 percent growth lag) produces no myelin deficit. There appears to be a threshold effect such that undernutrition producing a growth lag of between 20 to 30 percent first produces a measurable deficit. Increasingly severe regimens of nutritional restriction which produce approximately 30, 40 and 50 percent body weight lags result in initial myelin deficits of 25, 55 and 60 percent, respectively. Initial myelin deficits do not recover following nutritional rehabilitation, although myelin continues to increase in both normal and all undernourished populations. At the cellular level, severe postnatal nutritional restriction appears to depress both the initial synthesis of myelin precursor proteins (as demonstrated for proteolipid protein) as well as their subsequent assembly into myelin membrane. All of the findings of the present studies are consistent with a hypothetical model of undernutrition-induced brain hypomyelination in which the primary defect consists of a failure of oligodendroglia to myelinate a substantial percentage of axons, resulting in a greatly decreased ratio of myelinated to unmyelinated axons. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Metastasis, the major cause of morbidity and mortality in most cancers, is a highly organized and organ-selective process. The receptor tyrosine kinase HER2 enhances tumor metastasis, however, its role in homing to metastatic organs is poorly understood. The chemokine receptor CXCR4 has recently been shown to mediate the malignant cancer cells to specific organs. Here we show that HER2 enhances the expression of CXCR4 by increasing CXCR4 protein synthesis and inhibiting its degradation. We also observed significant correlation between HER2 and CXCR4 expression in human breast tumor tissues, and an association between CXCR4 expression and a poor overall survival rate in patients with breast cancer. Furthermore, we found that CXCR4 is required for HER2-induced invasion, migration, and adhesion activities in vitro . Finally we established stable transfectants using retroviral RNA interference to inhibit CXCR4 expression and showed that the CXCR4 is required for HER2-mediated lung metastasis in vivo. These results provide a plausible mechanism for HER2-mediated breast tumor metastasis and homing to metastatic organs, and establish a functional link between the receptor tyrosine kinase HER2 and the chemokine receptor CXCR4 signaling pathways. ^ The HER2 overexpression activates PI-3K/Akt pathways and plays an important role in mediating cell survival and tumor development. Hypoxia inducible factors (HIF) are the key regulator for angiogenesis and energy metabolism, and thereby enhance tumor growth and metastasis. HIF activation occurs in the majority of human cancers, including the HER2 overexpressing cancer cells. Previous reports suggested that increased PI-3K/Akt may activate HIF pathway in various tumors, but the detail mechanism is still not completely understood. Here we found that HER2/PI-3K/Akt pathway induces HIF-1α activation, which is independent of hypoxia, but relatively weaker than hypoxic stimulation. This phenomenon was further observed in Akt knock out mouse embryonic fibroblast cells. The PI-3K/Akt pathway does not affect HIF-1α binding with its E3 ligase VHL, but enhances the binding affinity between HIF-1α and β unit. Furthermore, we found Akt phosphorylates HIF-1β at serine 271 and further regulated HIF transcriptional activity. Our findings provided one mechanism that HER2 induce HIF activation via Akt to promote angiogenesis, and this process is independent on hypoxia, which may have implications in the oncogenic activity of HER2 and PI-3K/Akt pathway. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is well accepted that the hippocampus (HIP) is important for spatial and contextual memories, however, it is not clear if the entorhinal cortex (EC), the main input/output structure for the hippocampus, is also necessary for memory storage. Damage to the EC in humans results in memory deficits. However, animal studies report conflicting results on whether the EC is necessary for spatial and contextual memory. Memory consolidation requires gene expression and protein synthesis, mediated by signaling cascades and transcription factors. Extracellular-signal regulated kinase (ERK) cascade activity is necessary for long-term memory in several tasks, including those that test spatial and contextual memory. In this work, we explore the role of ERK-mediated plasticity in the EC on spatial and contextual memory. ^ To evaluate this role, post-training infusions of reversible pharmacological inhibitors specific for the ERK cascade that do not affect normal neuronal activity were targeted directly to the EC of awake, behaving animals. This technique provides spatial and temporal control over the inhibition of the ERK cascade without affecting performance during training or testing. Using the Morris water maze to study spatial memory, we found that ERK inhibition in the EC resulted in long-term memory deficits consistent with a loss of spatial strategy information. When animals were allowed to learn and consolidate a spatial strategy for solving the task prior to training and ERK inhibition, the deficit was alleviated. To study contextual memory, we trained animals in a cued fear-conditioning task and saw an increase in the activation of ERK in the EC 90 minutes following training. ERK inhibition in the EC over this time point, but not at an earlier time point, resulted in increased freezing to the context, but not to the tone, during a 48-hour retention test. In addition, animals froze maximally at the time the shock was given during training; similar to naïve animals receiving additional training, suggesting that ERK-mediated plasticity in the EC normally suppresses the temporal nature of the freezing response. These findings demonstrate that plasticity in the EC is necessary for both spatial and contextual memory, specifically in the retention of behavioral strategies. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Drosophila Transformer-2 (Tra2) protein activates the splicing of doublesex and fruitless pre-mRNA and represses M1 intron splicing in its own RNA in male germline. The M1 retention is part of negative feedback mechanism that controls Tra2 protein synthesis. However it is not known how the M1 intron is repressed or why Tra2 activates splicing of some RNAs while repressing splicing in others. Here we show that Tra2 and SR protein Rbp1 function together to specifically repress M1 splicing in vitro through the same intronic silencer by binding independently to distinct sites. The role of Rbp1 in M1 repression in vivo was validated by the finding that increased expression of Rbp1 in S2 cells promotes M1 retention. Furthermore, Tra2 blocks prespliceosomal A complex formation, a step corresponding to U2 snRNP recruitment to the branchpoint. High levels of Tra2 repression require an upstream enhancer. Together, we propose that the complex formed by Tra2 and Rbp1 on the silencer achieves splicing repression by blocking the recognition of the branchpoint or antagonizing enhancer function. ^ In addition, both splicing regulatory activities of Tra2 are essential developmental events, doublesex splicing is the key for Drosophila sex determination in the soma, while M1 retention occurs in the male germline and is necessary for spermatogenesis. However, active Tra2 is expressed ubiquitously. So another issue we have studied is how Tra2 accomplishes negative and positive splicing regulation in a tissue-specific fashion. Surprisingly, we found that nuclear extract from somatically-derived S2 cells support M1 repression in vitro. This led us to hypothesize that no germline specific factor is required and that high levels of Tra2 expression in the male germline is sufficient to trigger M1 retention. To test it, I examined whether increased expression of Tra2 could promote M1 retention in cells outside male germline. My results show that increased Tra2 expression promotes M1 retention in somatically-derived S2 cells as well as in the somatic tissues of living flies. These results show that somatic tissues are capable of supporting M1 repression but do not normally do so because the low levels of Tra2 do not trigger negative feedback regulation. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The unicellular amoeba Dictyostelium discoideum embarks on a developmental program upon starvation. During development, extracellular oscillatory cAMP signaling orchestrates the chemotaxis-mediated aggregation of ∼105 amoebae and is required for optimal induction of so-called pulse-induced genes. This requirement for pulsatile CAMP reflects adaptation of the cAMP-receptor-mediated pathways that regulate these genes. Through examination of a collection of pulse-induced genes, we defined two distinct gene classes based on their induction kinetics and the impact of mutations that impair PKA signaling. The first class (represented by D2 and prtA) is highly dependent on PKA signaling, whereas the second class (represented by carA, gpaB, and acaA) is not. Analysis of expression kinetics revealed that these classes are sequentially expressed with the PKA-independent genes peaking in expression before the PKA-dependent class. Experiments with cycloheximide, an inhibitor of translation, demonstrated that the pulse induction of both classes depends on new protein synthesis early in development. carA and gpaB also exhibit pulse-independent, starvation-induced expression which, unlike their pulse induction, was found to be insensitive to cycloheximide added at the outset of starvation. This result indicates that the mechanism of starvation induction pre-exists in growing cells and is distinct from the pulse induction mechanism for these genes. In order to identify cis-acting elements that are critical for induction of carA, we constructed a GFP reporter controlled by a 914-base-pair portion of its promoter and verified that its expression was PKA-independent, pulse-inducible, and developmentally regulated like the endogenous carA gene. By a combination of truncation, internal deletion, and site-directed mutation, we defined several distinct functional elements within the carA promoter, including a 39-bp region required for pulse induction between base pairs -321 and -282 (relative to the transcription start site), a 131-bp region proximal to the start site that is sufficient for starvation induction, and two separate enhancer domains. Identification of factors that interact with these promoter elements and genetic approaches exploiting the GFP reporter described here should help complete our understanding of the mechanisms regulating these genes, including adaptation mechanisms that likely also govern chemotaxis of Dictyostelium and mammalian cells. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tuberous sclerosis complex (TSC) is a dominant tumor suppressor disorder caused by mutations in either TSC1 or TSC2. The proteins of these genes form a complex to inhibit the mammalian target of rapamycin complex 1 (mTORC1), which controls protein translation and cell growth. TSC causes substantial neuropathology, often leading to autism spectrum disorders (ASDs) in up to 60% of patients. The anatomic and neurophysiologic links between these two disorders are not well understood. However, both disorders share cerebellar abnormalities. Therefore, we have characterized a novel mouse model in which the Tsc2 gene was selectively deleted from cerebellar Purkinje cells (Tsc2f/-;Cre). These mice exhibit progressive Purkinje cell degeneration. Since loss of Purkinje cells is a well-reported postmortem finding in patients with ASD, we conducted a series of behavior tests to assess if Tsc2f/-;Cre mice displayed autistic-like deficits. Using the three chambered social choice assay, we found that Tsc2f/-;Cre mice showed behavioral deficits, exhibiting no preference between a stranger mouse and an inanimate object, or between a novel and a familiar mouse. Tsc2f/-;Cre mice also demonstrated increased repetitive behavior as assessed with marble burying activity. Altogether, these results demonstrate that loss of Tsc2 in Purkinje cells in a haploinsufficient background lead to behavioral deficits that are characteristic of human autism. Therefore, Purkinje cells loss and/or dysfunction may be an important link between TSC and ASD. Additionally, we have examined some of the cellular mechanisms resulting from mutations in Tsc2 leading to Purkinje cell death. Loss of Tsc2 led to upregulation of mTORC1 and increased cell size. As a consequence of increased protein synthesis, several cellular stress pathways were upregulated. Principally, these included altered calcium signaling, oxidative stress, and ER stress. Likely as a consequence of ER stress, there was also upregulation of ubiquitin and autophagy. Excitingly, treatment with an mTORC1 inhibitor, rapamycin attenuated mTORC1 activity and prevented Purkinje cell death by reducing of calcium signaling, the ER stress response, and ubiquitin. Remarkably, rapamycin treatment also reversed the social behavior deficits, thus providing a promising potential therapy for TSC-associated ASD.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Each year, 150 million people sustain a Traumatic Brain Injury (TBI). TBI results in life-long cognitive impairments for many survivors. One observed pathological alteration following TBI are changes in glucose metabolism. Altered glucose uptake occurs in the periphery as well as in the nervous system, with an acute increase in glucose uptake, followed by a prolonged metabolic suppression. Chronic, persistent suppression of brain glucose uptake occurs in TBI patients experiencing memory loss. Abberant post-injury activation of energy-sensing signaling cascades could result in perturbed cellular metabolism. AMP-activated kinase (AMPK) is a kinase that senses low ATP levels, and promotes efficient cell energy usage. AMPK promotes energy production through increasing glucose uptake via glucose transporter 4 (GLUT4). When AMPK is activated, it phosphorylates Akt Substrate of 160 kDa (AS160), a Rab GTPase activating protein that controls Glut4 translocation. Additionally, AMPK negatively regulates energy-consumption by inhibiting protein synthesis via the mechanistic Target of Rapamycin (mTOR) pathway. Given that metabolic suppression has been observed post-injury, we hypothesized that activity of the AMPK pathway is transiently decreased. As AMPK activation increases energy efficiency of the cell, we proposed that increasing AMPK activity to combat the post-injury energy crisis would improve cognitive outcome. Additionally, we expected that inhibiting AMPK targets would be detrimental. We first investigated the role of an existing state of hyperglycemia on TBI outcome, as hyperglycemia correlates with increased mortality and decreased cognitive outcome in clinical studies. Inducing hyperglycemia had no effect on outcome; however, we discovered that AMPK and AS160 phosphorylation were altered post-injury. We conducted vii work to characterize this period of AMPK suppression and found that AMPK phosphorylation was significantly decreased in the hippocampus and cortex between 24 hours and 3 days post-injury, and phosphorylation of its downstream targets was consistently altered. Based on this period of observed decreased AMPK activity, we administered an AMPK activator post-injury, and this improved cognitive outcome. Finally, to examine whether AMPK-regulated target Glut4 is involved in post-injury glucose metabolism, we applied an inhibitor and found this treatment impaired post-injury cognitive function. This work is significant, as AMPK activation may represent a new TBI therapeutic target.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mechanisms underlying cellular response to proteasome inhibitors have not been clearly elucidated in solid tumor models. Evidence suggests that the ability of a cell to manage the amount of proteotoxic stress following proteasome inhibition dictates survival. In this study using the FDA-approved proteasome inhibitor bortezomib (Velcade®) in solid tumor cells, we demonstrated that perhaps the most critical response to proteasome inhibition is repression of global protein synthesis by phosphorylation of the eukaryotic initiation factor 2-α subunit (eIF2α). In a panel of 10 distinct human pancreatic cancer cells, we showed marked heterogeneity in the ability of cancer cells to induce eIF2α phosphorylation upon stress (eIF2α-P); lack of inducible eIF2α-P led to excessive accumulation of aggregated proteins, reactive oxygen species, and ultimately cell death. In addition, we examined complementary cytoprotective mechanisms involving the activation of the heat shock response (HSR), and found that induction of heat shock protein 70 kDa (Hsp72) protected against proteasome inhibitor-induced cell death in human bladder cancer cells. Finally, investigation of a novel histone deacetylase 6 (HDAC6)-selective inhibitor suggested that the cytoprotective role of the cytoplasmic histone deacetylase 6 (HDAC6) in response to proteasome inhibition may have been previously overestimated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Proviral integration site for Moloney murine leukemia virus (Pim) kinases are Ser/Thr/Tyr kinases. They modulate B-cell development but become oncoproteins and promote cancer development once overexpressed. Containing three isoforms, Pim-1, -2 and -3 are known to phosphorylate various substrates that regulate transcription, translation, cell cycle, and survival pathways in both hematological and solid tumors. Mantle cell lymphoma (MCL) is an aggressive B-cell lymphoma. Elevated Pim kinase levels are common in MCL, and it negatively correlates with patient outcome. SGI-1776 is a small molecule inhibitor selective for Pim-1/-3. We hypothesize that SGI-1776 treatment in MCL will inhibit Pim kinase function, and inhibition of downstream substrates phosphorylation will disrupt transcriptional, translational, and cell cycle processes while promoting apoptosis. SGI-1776 treatment induced moderate to high levels of apoptosis in four MCL cell lines (JeKo-1, Mino, SP-53 and Granta-519) and peripheral blood mononuclear cells (PBMCs) from MCL patients. Phosphorylation of transcription and translation regulators, c-Myc and 4E-BP1 declined in both model systems. Additionally, levels of short-lived Mcl-1 mRNA and protein also decreased and correlated with decline of global RNA synthesis. Collectively, our investigations highlight Pim kinases as viable drug targets in MCL and emphasize their roles in transcriptional and translational regulation. We further investigated a combination strategy using SGI-1776 with bendamustine, an FDA-approved DNA-damaging alkylating agent for treating non-Hodgkin’s lymphoma. We hypothesized this combination will enhance SGI-1776-induced transcription and translation inhibition, while promoting bendamustine-triggered DNA damage and inducing additive to synergistic cytotoxicity in B-cell lymphoma. Bendamustine alone resulted in moderate levels of apoptosis induction in MCL cell lines (JeKo-1 and Mino), and in MCL and splenic marginal zone lymphoma (a type of B-cell lymphoma) primary cells. An additive effect in cell killing was observed when combined with SGI-1776. Expectedly, SGI-1776 effectively decreased global RNA and protein synthesis levels, while bendamustine significantly inhibited DNA synthesis and generated DNA damage response. In combination, intensified inhibitory effects in DNA, RNA and protein syntheses were observed. Together, these data suggested feasibility of using Pim kinase inhibitor in combination with chemotherapeutic agents such as bendamustine in B-cell lymphoma, and provided foundation of their mechanism of actions in lymphoma cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present work examines the role of cAMP in the induction of the type of long-term morphological changes that have been shown to be correlated with long-term sensitization in Aplysia.^ To examine this issue, cAMP was injected into individual tail sensory neurons in the pleural ganglion to mimic, at the single cell level, the effects of behavioral training. After a 22 hr incubation period, the same cells were filled with horseradish peroxidase and 2 hours later the tissue was fixed and processed. Morphological analysis revealed that cAMP induced an increase in two morphological features of the neurons, varicosities and branch points. These structural alterations, which are similar to those seen in siphon sensory neurons of the abdominal ganglion following long-term sensitization training of the siphon-gill withdrawal reflex, could subserve the altered behavioral response of the animal. These results expose another role played by cAMP in the induction of learning, the initiation of a structural substrate, which, in concert with other correlates, underlies learning.^ cAMP was injected into sensory neurons in the presence of the reversible protein synthesis inhibitor, anisomycin. The presence of anisomycin during and immediately following the nucleotide injection completely blocked the structural remodeling. These results indicate that the induction of morphological changes by cAMP is a process dependent on protein synthesis.^ To further examine the temporal requirement for protein synthesis in the induction of these changes, the time of anisomycin exposure was varied. The results indicate that the cellular processes triggered by cAMP are sensitive to the inhibition of protein synthesis for at least 7 hours after the nucleotide injection. This is a longer period of sensitivity than that for the induction of another correlate of long-term sensitization, facilitation of the sensory to motor neuron synaptic connection. Thus, these findings demonstrate that the period of sensitivity to protein synthesis inhibition is not identical for all correlates of learning. In addition, since the induction of the morphological changes can be blocked by anisomycin pulses administered at different times during and following the cAMP injection, this suggests that cAMP is triggering a cascade of protein synthesis, with successive rounds of synthesis being dependent on successful completion of preceding rounds. Inhibition at any time during this cascade can block the entire process and so prevent the development of the structural changes.^ The extent to which cAMP can mimic the structural remodeling induced by long-term training was also examined. Animals were subjected to unilateral sensitization training and the morphology of the sensory neurons was examined twenty-four hours later. Both cAMP injection and long-term training produced a twofold increase in varicosities and approximately a fifty percent increase in the number of branch points in the sensory neuron arborization within the pleural ganglion. (Abstract shortened by UMI.) ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The non-Hodgkin's B cell lymphomas are a diverse group of neoplastic diseases. The incidence rate of the malignant tumors has been rising rapidly over the past twenty years in the United States and worldwide. The lack of insight to pathogenesis of the disease poses a significant problem in the early detection and effective treatment of the human malignancies. These studies attempted to investigate the molecular basis of pathogenesis of the human high grade B cell non-Hodgkin's lymphomas with a reverse genetic approach. The specific objective was to clone gene(s) which may play roles in development and progression of human high grade B cell non-Hodgkin's lymphomas.^ The messenger RNAs from two high grade B cell lymphoma lines, CJ and RR, were used for construction of cDNA libraries. Differential screening of the derived cDNA libraries yielded a 1.4 kb cDNA clone. The gene, designated as NHL-B1.4, was shown to be highly amplified and over-expressed in the high grade B cell lymphoma lines. It was not expressed in the peripheral blood lymphoid cells from normal donors. However, it was inducible in peripheral blood T lymphocytes by a T cell mitogen, PHA, but could not be activated in normal B cells by B cell mitogen PMA. Further molecular characterization revealed that the gene may have been rearranged in the RR and some other B cell lymphoma lines. The coding capacity of the cDNA has been confirmed by a rabbit reticulocyte lysate and wheat germ protein synthesis system. A recombinant protein with a molecular weight of approximate 30 kDa was visualized in autoradiogram. Polyclonal antisera have been generated by immunization of two rabbits with the NHL-B1.4 recombinant protein produced in the E. coli JM109. The derived antibody can recognize a natural protein with molecular weight of 49 kDa in cell lysate of activated peripheral T lymphocytes of normal donors and both the cell lysate and supernatant of RR B cell lymphoma lines. The possible biologic functions of the molecule has been tested preliminarily in a B lymphocyte proliferation assay. It was found that the Q-sepharose chromatograph purified supernatant of COS cell transfection could increase tritiated thymidine uptake by B lymphocytes but not by T lymphocytes. The B cell stimulatory activity of the supernatant of COS cell tranfection could be neutralized by the polyclonal antisera, indicating that the NHL-B1.4 gene product may be a molecule with BCGF-like activity.^ The expression profiles of NHL-B1.4 in normal and neoplastic lymphoid cells were consistent with the current B lymphocyte activation model and autocrine hypothesis of high grade B cell lymphomagenesis. These results suggested that the NHL-B1.4 cDNA may be a disease-related gene of human high grade B cell lymphomas, which may codes for a postulated B cell autocrine growth factor. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The fine balance between proliferation and apoptosis plays a primary role in carcinogenesis. Proto-oncogenes that induce both proliferation and apoptosis provide a powerful inbuilt system to inhibit clonal expansion of cells with high proliferation rates. This provides a restraint to the development of neoplasms. C-myc expressing cells undergo apoptosis in low serum by an unknown mechanism. Several lines of evidence suggested that c-myc induces apoptosis by a transcriptional mechanism. However, the target genes of this program have not been fully defined. Protein synthesis inhibitors induce apoptosis in c-myc over-expressing cells at high serum levels suggesting that inhibition of synthesis of a survival factor may induce apoptosis. We show that the expression of c-myc directly correlates with an increase in the level of a survival protein, bcl-$\rm x\sb{L},$ and a decrease in the pro-apoptotic protein, bax, at both the protein and mRNA level. Furthermore, a significant decrease of the bcl-$\rm x\sb{L}$ protein levels is observed under low serum conditions. In order to investigate the mechanism of regulation of bcl-$\rm x\sb{L}$ and bax by c-myc, the bcl-x and bax promoters were cloned, sequenced and shown to contain c-myc binding sites. The chloramephenicol acetyl transferase (CAT) reporter assay was used to demonstrate activation of the bcl-x promoter by increasing levels of c-myc when co-transfected in COS cells. The bax promoter was also shown to be transrepressed in c-myc expressing cells. The role of bcl-$\rm x\sb{L}$ in apoptosis regulation in c-myc cell lines in normal and low serum was then investigated. Cells lines expressing c-myc and bcl-$\rm x\sb{L}$ were generated and were shown to be resistant to apoptosis induction in low serum. Furthermore, cell lines expressing c-myc, anti-sense bcl-$\rm x\sb{L}$ and $\beta$-galactosidase demonstrated significantly enhanced rates of apoptosis in high serum compared to c-myc Rat 1a cells. These findings suggest that c-myc activates a survival program involving bcl-$\rm x\sb{L}$ upregulation and bax downregulation. However, this survival signal is reduced under low serum conditions by the relative downregulation of bcl-$\rm x\sb{L}$ allowing for apoptosis to proceed. These data also directly demonstrates that downregulation in the level of bcl-$\rm x\sb{L}$ associated with low serum conditions is a critical determinant of c-myc induced apoptosis. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A major portion of this thesis work was dedicated to study the nature and significance of spliced introns. The initial work was focused on studying the IVS1$\sb{\rm C\beta 1}$ intron from a T-cell receptor (TCR)-$\beta$ gene. Compared to an intron lariat control from adenovirus pre-mRNA that was spliced in vitro, IVS1$\sb{\rm C\beta 1}$ was debranched less efficiently by HeLa S100 extracts, although IVS1$\sb{\rm C\beta 1}$ also used the consensus branchpoint in vivo. Subcellular-fractionation analysis showed that most IVS1$\sb{\rm C\beta 1}$ lariats cofractionated with pre-mRNA in the nucleus, consistent with the possibility that intron degradation releases splicing factors which will be available for further rounds of splicing. The half-life of IVS1$\sb{\rm C\beta 1}$ from the endogenous TCR-$\beta$ gene was measured using the general transcription inhibitor actinomycin D to be about $\sim$15 min, which was similar to that of unstable mRNAs such as c-myc mRNA.^ The general transcription inhibitor DRB was also used for intron stability analysis. Unexpectedly, DRB decreased intron and pre-mRNA levels only initially, it later increased the levels of intron-containing RNAs. Inhibition of transcription initiation appeared to be the major early effect (the reduction phase); whereas enhanced premature transcription termination was dominant later (the induction phase).^ Having established the procedures for studying in vivo spliced introns, this approach was applied to study the mechanism of nonsense-mediated downregulation (NMD), a phenomena in which premature termination codons (PTCs) decrease the levels of mRNAs. In this study, the novel intron-oriented approach was applied to study the mechanism of NMD. The levels of spliced introns immediately upstream and downstream of a PTC-bearing exon in a TCR-$\beta$ gene were identified and analyzed along with their pre-mRNA. Although PTC reduced the mRNA levels by 4 to 9 fold, the steady-state levels of spliced introns and the pre-mRNA-to-intron ratios were not significantly altered, indicating that the PTC did not significantly inhibit TCR-$\beta$ RNA splicing. Consistent with this conclusion, the half-lives of the PTC$\sp+$ and PTC$\sp-$ pre-mRNA were similar. The protein synthesis inhibitor cyclohexmide (CHX) upregulated the levels of the PTC$\sp+$ mRNA over 10 fold without affecting the levels of the spliced introns, suggesting that the reversal effect of CHX was through stabilization, not production. These results indicated that inhibition of splicing could not be the major mechanism for the NMD pathway of the TCR-$\beta$ gene, instead, suggesting that mRNA destabilization may be more important. (Abstract shortened by UMI.) ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Non-melanoma skin cancers, including basal cell carcinoma and squamous cell carcinoma (SCC), are the most common neoplasms in the United States with a lifetime risk nearly equal to all other types of cancer combined. Retinoids are naturally occurring and synthetic analogues of vitamin A that bind to nuclear retinoid receptors and modulate gene expression as a means of regulating cell proliferation and differentiation. Retinoids have been employed for many years in the treatment of various cutaneous lesions and for cancer chemoprevention and therapy. The primary drawback limiting the use of retinoids is their toxicity, which is also associated with receptor-gene interactions. In this study, the effects of the synthetic retinoids N-(4-hydroxyphenyl)retinamide (4HPR) and 6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphthalene carboxylic acid (CD437) were examined in cutaneous keratinocytes. Four human cutaneous SCC cell lines were examined along with normal human epidermal keratinocyte (NHEK) cells from two donors. Sensitivity to 4HPR or CD437 alone or in combination with other agents was determined via growth inhibition, cell cycle distributions, or apoptosis induction. Both synthetic retinoids were able to promote apoptosis in SCC cells more effectively than the natural retinoid all-trans retinoic acid. Apoptosis could not be inhibited by nuclear retinoic acid receptor antagonists. In NHEK cells, 4HPR induced apoptosis while CD437 promoted G1 arrest. 4HPR acted as a prooxidant by generating reactive oxygen species (ROS) in SCC and NHEK cells. 4HPR-induced apoptosis in SCC cells could be inhibited or potentiated by manipulating cellular defenses against oxidative stress, indicating an essential role for ROS in 4HPR-induced apoptosis. CD437 promoted apoptosis in SCC cells in S and G2/M phases of the cell cycle within two hours of treatment, and this rapid induction could not be blocked with cycloheximide. This study shows: (1) 4HPR- and CD437-induced apoptosis do not directly involve a traditional retinoid pathway; (2) 4HPR can act as a prooxidant as a means of promoting apoptosis; (3) CD437 induces apoptosis in SCC cells independent of protein synthesis and is potentially less toxic to NHEK cells; and (4) 4HPR and CD437 operate under different mechanisms with respect to apoptosis induction and this may potentially enhance their therapeutic index in vivo. ^