987 resultados para MULTIPLE IMPUTATION
Resumo:
The long-snouted seahorse (Hippocampus guttulatus) (Cuvier, 1829), was used to validate the pre-dictive accuracy of three progressively realistic models for estimating the realized annual fecundity of asyn-chronous, indeterminate, multiple spawners. Underwater surveys and catch data were used to estimate the duration of the reproductive season, female spawning frequency, male brooding frequency, and batch fecun-dity. The most realistic model, a generalization of the spawning fraction method, produced unbiased estimates of male brooding frequency (mean ±standard deviation [SD]=4.2 ±1.6 broods/year). Mean batch fecundity and realized annual fecundity were 213.9 (±110.9) and 903.6 (±522.4), respectively. However, females prepared significantly more clutches than the number of broods produced by males. Thus, methods that infer spawning frequency from patterns in female egg production may lead to significant overestimates of realized annual fecundity. The spawning fraction method is broadly applicable to many taxa that exhibit parental care and can be applied nondestructively to species for which conservation is a concern.
Resumo:
The term “selectivity” refers to the relationship between the size (or age) of a fish and its vulnerability to a given kind of fishing gear. A selectivity schedule, along with other parameters, is normally estimated in the course of fitting a stock assessment model, and the estimated schedule can have a large effect on both the estimate of present stock abundance and the choice of an appropriate harvest rate. The form of the relationship is usually not known and not well determined by the data, and equally good model fits can often be obtained with different plausible specifications of selectivity. Choosing among the model fits and associated abundance estimates in this situation is problematic (Sigler, 1999; Sullivan et al., 19
Resumo:
A modification of the Schaefer surplus-production model was used to account for environmental induced variations of shrimp (Penaeus vannamei) catch in northern Peru. Based on time series of catch, effort, river discharge and sea surface temperature, fluctuations in catch of shrimps are explained and discussed with respect to multiple level of carrying capacity and hence different maximum sustainable yields.
Resumo:
We consider estimation of mortality rates and growth parameters from length-frequency data of a fish stock and derive the underlying length distribution of the population and the catch when there is individual variability in the von Bertalanffy growth parameter L∞. The model is flexible enough to accommodate 1) any recruitment pattern as a function of both time and length, 2) length-specific selectivity, and 3) varying fishing effort over time. The maximum likelihood method gives consistent estimates, provided the underlying distribution for individual variation in growth is correctly specified. Simulation results indicate that our method is reasonably robust to violations in the assumptions. The method is applied to tiger prawn data (Penaeus semisulcatus) to obtain estimates of natural and fishing mortality.