834 resultados para MOTOR SKILLS AND SPORTS
Resumo:
An eBook to support accelerated nursing students is being developed at QUT. The first component of this is a formative activity comprising key bioscience and pharmacology concepts and self-help quizzes. This initiative has been reviewed favourably by the students. The eBook will also cover requisite academic skills and revision bioscience material.
Resumo:
Expert searchers engage with information as information brokers, researchers, reference librarians, information architects, faculty who teach advanced search, and in a variety of other information-intensive professions. Their experiences are characterized by a profound understanding of information concepts and skills and they have an agile ability to apply this knowledge to interacting with and having an impact on the information environment. This study explored the learning experiences of searchers to understand the acquisition of search expertise. The research question was: What can be learned about becoming an expert searcher from the learning experiences of proficient novice searchers and highly experienced searchers? The key objectives were: (1) to explore the existence of threshold concepts in search expertise; (2) to improve our understanding of how search expertise is acquired and how novice searchers, intent on becoming experts, can learn to search in more expertlike ways. The participant sample drew from two population groups: (1) highly experienced searchers with a minimum of 20 years of relevant professional experience, including LIS faculty who teach advanced search, information brokers, and search engine developers (11 subjects); and (2) MLIS students who had completed coursework in information retrieval and online searching and demonstrated exceptional ability (9 subjects). Using these two groups allowed a nuanced understanding of the experience of learning to search in expertlike ways, with data from those who search at a very high level as well as those who may be actively developing expertise. The study used semi-structured interviews, search tasks with think-aloud narratives, and talk-after protocols. Searches were screen-captured with simultaneous audio-recording of the think-aloud narrative. Data were coded and analyzed using NVivo9 and manually. Grounded theory allowed categories and themes to emerge from the data. Categories represented conceptual knowledge and attributes of expert searchers. In accord with grounded theory method, once theoretical saturation was achieved, during the final stage of analysis the data were viewed through lenses of existing theoretical frameworks. For this study, threshold concept theory (Meyer & Land, 2003) was used to explore which concepts might be threshold concepts. Threshold concepts have been used to explore transformative learning portals in subjects ranging from economics to mathematics. A threshold concept has five defining characteristics: transformative (causing a shift in perception), irreversible (unlikely to be forgotten), integrative (unifying separate concepts), troublesome (initially counter-intuitive), and may be bounded. Themes that emerged provided evidence of four concepts which had the characteristics of threshold concepts. These were: information environment: the total information environment is perceived and understood; information structures: content, index structures, and retrieval algorithms are understood; information vocabularies: fluency in search behaviors related to language, including natural language, controlled vocabulary, and finesse using proximity, truncation, and other language-based tools. The fourth threshold concept was concept fusion, the integration of the other three threshold concepts and further defined by three properties: visioning (anticipating next moves), being light on one's 'search feet' (dancing property), and profound ontological shift (identity as searcher). In addition to the threshold concepts, findings were reported that were not concept-based, including praxes and traits of expert searchers. A model of search expertise is proposed with the four threshold concepts at its core that also integrates the traits and praxes elicited from the study, attributes which are likewise long recognized in LIS research as present in professional searchers. The research provides a deeper understanding of the transformative learning experiences involved in the acquisition of search expertise. It adds to our understanding of search expertise in the context of today's information environment and has implications for teaching advanced search, for research more broadly within library and information science, and for methodologies used to explore threshold concepts.
Resumo:
Aim Worldwide obesity levels have increased unprecedentedly over the past couple of decades. Although the prevalence, trends and associated socio-economic factors of the condition have been extensively reported in Western populations, less is known regarding South Asian populations. Methods A review of articles using Medline with combinations of the MeSH terms: 'Obesity', 'Overweight' and 'Abdominal Obesity' limiting to epidemiology and South Asian countries. Results Despite methodological heterogeneity and variation according to country, area of residence and gender , the most recent nationally representative and large regional data demonstrates that without any doubt there is a epidemic of obesity, overweight and abdominal obesity in South Asian countries. Prevalence estimates of overweight and obesity (based on Asian cut-offs: overweight ≥ 23 kg/m(2), obesity ≥ 25 kg/m(2)) ranged from 3.5% in rural Bangladesh to over 65% in the Maldives. Abdominal obesity was more prevalent than general obesity in both sexes in this ethnic group. Countries with the lowest prevalence had the highest upward trend of obesity. Socio-economic factors associated with greater obesity in the region included female gender, middle age, urban residence, higher educational and economic status. Conclusion South Asia is significantly affected by the obesity epidemic. Collaborative public health interventions to reverse these trends need to be mindful of many socio-economic constraints in order to provide long-term solutions.
Resumo:
Background Research is a major driver of health care improvement and evidence-based practice is becoming the foundation of health care delivery. For health professions to develop within emerging models of health care delivery, it would seem imperative to develop and monitor the research capacity and evidence-based literacy of the health care workforce. This observational paper aims to report the research capacity levels of statewide populations of public-sector podiatrists at two different time points twelve-months apart. Methods The Research Capacity & Culture (RCC) survey was electronically distributed to all Queensland Health (Australia) employed podiatrists in January 2011 (n = 58) and January 2012 (n = 60). The RCC is a validated tool designed to measure indicators of research skill in health professionals. Participants rate skill levels against each individual, team and organisation statement on a 10-point scale (one = lowest, ten = highest). Chi-squared and Mann Whitney U tests were used to determine any differences between the results of the two survey samples. A minimum significance of p < 0.05 was used throughout. Results Thirty-seven (64%) podiatrists responded to the 2011 survey and 33 (55%) the 2012 survey. The 2011 survey respondents reported low skill levels (Median < 4) on most aspects of individual research aspects, except for their ability to locate and critically review research literature (Median > 6). Whereas, most reported their organisation’s skills to perform and support research at much higher levels (Median > 6). The 2012 survey respondents reported significantly higher skill ratings compared to the 2011 survey in individuals’ ability to secure research funding, submit ethics applications, and provide research advice, plus, in their organisation’s skills to support, fund, monitor, mentor and engage universities to partner their research (p < 0.05). Conclusions This study appears to report the research capacity levels of the largest populations of podiatrists published. The 2011 survey findings indicate podiatrists have similarly low research capacity skill levels to those reported in the allied health literature. The 2012 survey, compared to the 2011 survey, suggests podiatrists perceived higher skills and support to initiate research in 2012. This improvement coincided with the implementation of research capacity building strategies.
Resumo:
Introduction. The purpose of this chapter is to address the question raised in the chapter title. Specifically, how can models of motor control help us understand low back pain (LBP)? There are several classes of models that have been used in the past for studying spinal loading, stability, and risk of injury (see Reeves and Cholewicki (2003) for a review of past modeling approaches), but for the purpose of this chapter we will focus primarily on models used to assess motor control and its effect on spine behavior. This chapter consists of 4 sections. The first section discusses why a shift in modeling approaches is needed to study motor control issues. We will argue that the current approach for studying the spine system is limited and not well-suited for assessing motor control issues related to spine function and dysfunction. The second section will explore how models can be used to gain insight into how the central nervous system (CNS) controls the spine. This segues segue nicely into the next section that will address how models of motor control can be used in the diagnosis and treatment of LBP. Finally, the last section will deal with the issue of model verification and validity. This issue is important since modelling accuracy is critical for obtaining useful insight into the behavior of the system being studied. This chapter is not intended to be a critical review of the literature, but instead intended to capture some of the discussion raised during the 2009 Spinal Control Symposium, with some elaboration on certain issues. Readers interested in more details are referred to the cited publications.
Resumo:
Quantity and timing of protein ingestion are major factors regulating myofibrillar protein synthesis (MPS). However, the effect of specific ingestion patterns on MPS throughout a 12 h period is unknown. We determined how different distributions of protein feeding during 12 h recovery after resistance exercise affects anabolic responses in skeletal muscle. Twenty-four healthy trained males were assigned to three groups (n = 8/group) and undertook a bout of resistance exercise followed by ingestion of 80 g of whey protein throughout 12 h recovery in one of the following protocols: 8 × 10 g every 1.5 h (PULSE); 4 × 20 g every 3 h (intermediate: INT); or 2 × 40 g every 6 h (BOLUS). Muscle biopsies were obtained at rest and after 1, 4, 6, 7 and 12 h post exercise. Resting and post-exercise MPS (l-[ring-(13)C6] phenylalanine), and muscle mRNA abundance and cell signalling were assessed. All ingestion protocols increased MPS above rest throughout 1-12 h recovery (88-148%, P < 0.02), but INT elicited greater MPS than PULSE and BOLUS (31-48%, P < 0.02). In general signalling showed a BOLUS>INT>PULSE hierarchy in magnitude of phosphorylation. MuRF-1 and SLC38A2 mRNA were differentially expressed with BOLUS. In conclusion, 20 g of whey protein consumed every 3 h was superior to either PULSE or BOLUS feeding patterns for stimulating MPS throughout the day. This study provides novel information on the effect of modulating the distribution of protein intake on anabolic responses in skeletal muscle and has the potential to maximize outcomes of resistance training for attaining peak muscle mass.
Resumo:
Purpose: Hyperactive platelets contribute to the thrombotic response in humans, and exercise transiently increases platelet function. Caffeine is routinely used by athletes as an ergogenic aid, but the combined effect of exercise and caffeine on platelet function has not been investigated. Methods: Twelve healthy males were randomly assigned to one of four groups and undertook four experimental trials of a high-intensity aerobic interval training (AIT) bout or rest with ingestion of caffeine (3 mg·kg-1) or placebo. AIT was 8 × 5 min at approximately 75% peak power output (approximately 80% V?O2peak) and 1-min recovery (approximately 40% peak power output, approximately 50% V?O2peak) intervals. Blood/urine was collected before, 60, and 90 min after capsule ingestion and analyzed for platelet aggregation/activation. Results: AIT increased platelet reactivity to adenosine diphosphate (placebo 30.3%, caffeine 13.4%, P < 0.05) and collagen (placebo 10.8%, caffeine 5.1%, P < 0.05) compared with rest. Exercise placebo increased adenosine diphosphate-induced aggregation 90 min postingestion compared with baseline (40.5%, P < 0.05), but the increase when exercise was combined with caffeine was small (6.6%). During the resting caffeine protocol, collagen-induced aggregation was reduced (-4.3%, P < 0.05). AIT increased expression of platelet activation marker PAC-1 with exercise placebo (P < 0.05) but not when combined with caffeine. Conclusion: A single bout of AIT increases platelet function, but caffeine ingestion (3 mg·kg) does not exacerbate platelet function at rest or in response to AIT. Our results provide new information showing caffeine at a dose that can elicit ergogenic effects on performance has no detrimental effect on platelet function and may have the potential to attenuate increases in platelet activation and aggregation when undertaking strenuous exercise.
Resumo:
PURPOSE We have previously shown that the aminoacidemia caused by the consumption of a rapidly digested protein after resistance exercise enhances muscle protein synthesis (MPS) more than the amino acid (AA) profile associated with a slowly digested protein. Here, we investigated whether differential feeding patterns of a whey protein mixture commencing before exercise affect postexercise intracellular signaling and MPS. METHODS Twelve resistance-trained males performed leg resistance exercise 45 min after commencing each of three volume-matched nutrition protocols: placebo (PLAC, artificially sweetened water), BOLUS (25 g of whey protein + 5 g of leucine dissolved in artificially sweetened water; 1× 500 mL), or PULSE (15× 33-mL aliquots of BOLUS drink every 15 min). RESULTS The preexercise rise in plasma AA concentration with PULSE was attenuated compared with BOLUS (P < 0.05); this effect was reversed after exercise, with two-fold greater leucine concentrations in PULSE compared with BOLUS (P < 0.05). One-hour postexercise, phosphorylation of p70 S6K and rpS6 was increased above baseline with BOLUS and PULSE, but not PLAC (P < 0.05); furthermore, PULSE > BOLUS (P < 0.05). MPS throughout 5 h of recovery was higher with protein ingestion compared with PLAC (0.037 ± 0.007), with no differences between BOLUS or PULSE (0.085 ± 0.013 vs. 0.095 ± 0.010%•h, respectively, P = 0.56). CONCLUSIONS Manipulation of aminoacidemia before resistance exercise via different patterns of intake of protein altered plasma AA profiles and postexercise intracellular signaling. However, there was no difference in the enhancement of the muscle protein synthetic response after exercise. Protein sources producing a slow AA release, when consumed before resistance exercise in sufficient amounts, are as effective as rapidly digested proteins in promoting postexercise MPS.
Resumo:
Background: Ingestion of whey or casein yields divergent patterns of aminoacidemia that influence whole-body and skeletal muscle myofibrillar protein synthesis (MPS) after exercise. Direct comparisons of the effects of contrasting absorption rates exhibited by these proteins are confounded by their differing amino acid contents. Objective: Our objective was to determine the effect of divergent aminoacidemia by manipulating ingestion patterns of whey protein alone on MPS and anabolic signaling after resistance exercise. Design: In separate trials, 8 healthy men consumed whey protein either as a single bolus (BOLUS; 25-g dose) or as repeated, small, "pulsed" drinks (PULSE; ten 2.5-g drinks every 20 min) to mimic a more slowly digested protein. MPS and phosphorylation of signaling proteins involved in protein synthesis were measured at rest and after resistance exercise. Results: BOLUS increased blood essential amino acid (EAA) concentrations above those of PULSE (162% compared with 53%, P < 0.001) 60 min after exercise, whereas PULSE resulted in a smaller but sustained increase in aminoacidemia that remained elevated above BOLUS amounts later (180-220 min after exercise, P < 0.05). Despite an identical net area under the EAA curve, MPS was elevated to a greater extent after BOLUS than after PULSE early (1-3 h: 95% compared with 42%) and later (3-5 h: 193% compared with 121%) (both P < 0.05). There were greater changes in the phosphorylation of the Akt-mammalian target of rapamycin pathway after BOLUS than after PULSE. Conclusions: Rapid aminoacidemia in the postexercise period enhances MPS and anabolic signaling to a greater extent than an identical amount of protein fed in small pulses that mimic a more slowly digested protein. A pronounced peak aminoacidemia after exercise enhances protein synthesis.
Resumo:
The effect of nutrient availability on the acute molecular responses following repeated sprint exercise is unknown. The aim of this study was to determine skeletal muscle cellular and protein synthetic responses following repeated sprint exercise with nutrient provision. Eight healthy young male subjects undertook two sprint cycling sessions (10 × 6 s, 0.75 N m torque kg -1, 54 s recovery) with either pre-exercise nutrient (24 g whey, 4.8 g leucine, 50 g maltodextrin) or non-caloric placebo ingestion. Muscle biopsies were taken from vastus lateralis at rest, and after 15 and 240 min post-exercise recovery to determine muscle cell signalling responses and protein synthesis by primed constant infusion of L-[ring- 13C 6] phenylalanine. Peak and mean power outputs were similar between nutrient and placebo trials. Post-exercise myofibrillar protein synthetic rate was greater with nutrient ingestion compared with placebo ( ? 48%, P<0.05) but the rate of mitochondrial protein synthesis was similar between treatments. The increased myofibrillar protein synthesis following sprints with nutrient ingestion was associated with coordinated increases in Akt-mTOR-S6KrpS6 phosphorylation 15 min post-exercise (?200-600%, P<0.05), while there was no effect on these signalling molecules when exercise was undertaken in the fasted state. For the first time we report a beneficial effect of nutrient provision on anabolic signalling and muscle myofibrillar protein synthesis following repeated sprint exercise. Ingestion of protein/carbohydrate in close proximity to high-intensity sprint exercise provides an environment that increases cell signalling and protein synthesis.
Resumo:
The mammalian target of rapamycin (mTOR) is a highly conserved atypical serine-threonine kinase that controls numerous functions essential for cell homeostasis and adaptation in mammalian cells via 2 distinct protein complex formations. Moreover, mTOR is a key regulatory protein in the insulin signalling cascade and has also been characterized as an insulin-independent nutrient sensor that may represent a critical mediator in obesity-related impairments of insulin action in skeletal muscle. Exercise characterizes a remedial modality that enhances mTOR activity and subsequently promotes beneficial metabolic adaptation in skeletal muscle. Thus, the metabolic effects of nutrients and exercise have the capacity to converge at the mTOR protein complexes and subsequently modify mTOR function. Accordingly, the aim of the present review is to highlight the role of mTOR in the regulation of insulin action in response to overnutrition and the capacity for exercise to enhance mTOR activity in skeletal muscle.
Resumo:
The need to address on-road motorcycle safety in Australia is important due to the disproportionately high percentage of riders and pillions killed and injured each year. One approach to preventing motorcycle-related injury is through training and education. However, motorcycle rider training lacks empirical support as an effective road safety countermeasure to reduce crash involvement. Previous reviews have highlighted that risk-taking is a contributing factor in many motorcycle crashes, rather than merely a lack of vehicle-control skills (Haworth & Mulvihill, 2005; Jonah, Dawson & Bragg, 1982; Watson et al, 1996). Hence, though the basic vehicle-handling skills and knowledge of road rules that are taught in most traditional motorcycle licence training programs may be seen as an essential condition of safe riding, they do not appear to be sufficient in terms of crash reduction. With this in mind there is considerable scope for the improvement of program focus and content for rider training and education. This program of research examined an existing traditional pre-licence motorcycle rider training program and formatively evaluated the addition of a new classroom-based module to address risky riding; the Three Steps to Safer Riding program. The pilot program was delivered in the real world context of the Q-Ride motorcycle licensing system in the state of Queensland, Australia. Three studies were conducted as part of the program of research: Study 1, a qualitative investigation of delivery practices and student learning needs in an existing rider training course; Study 2, an investigation of the extent to which an existing motorcycle rider training course addressed risky riding attitudes and motives; and Study 3, a formative evaluation of the new program. A literature review as well as the investigation of learning needs for motorcyclists in Study 1 aimed to inform the initial planning and development of the Three Steps to Safer Riding program. Findings from Study 1 suggested that the training delivery protocols used by the industry partner training organisation were consistent with a learner-centred approach and largely met the learning needs of trainee riders. However, it also found that information from the course needs to be reinforced by on-road experiences for some riders once licensed and that personal meaning for training information was not fully gained until some riding experience had been obtained. While this research informed the planning and development of the new program, a project team of academics and industry experts were responsible for the formulation of the final program. Study 2 and Study 3 were conducted for the purpose of formative evaluation and program refinement. Study 2 served primarily as a trial to test research protocols and data collection methods with the industry partner organisation and, importantly, also served to gather comparison data for the pilot program which was implemented with the same rider training organisation. Findings from Study 2 suggested that the existing training program of the partner organisation generally had a positive (albeit small) effect on safety in terms of influencing attitudes to risk taking, the propensity for thrill seeking, and intentions to engage in future risky riding. However, maintenance of these effects over time and the effects on riding behaviour remain unclear due to a low response rate upon follow-up 24 months after licensing. Study 3 was a formative evaluation of the new pilot program to establish program effects and possible areas for improvement. Study 3a examined the short term effects of the intervention pilot on psychosocial factors underpinning risky riding compared to the effects of the standard traditional training program (examined in Study 2). It showed that the course which included the Three Steps to Safer Riding program elicited significantly greater positive attitude change towards road safety than the existing standard licensing course. This effect was found immediately following training, and mean scores for attitudes towards safety were also maintained at the 12 month follow-up. The pilot program also had an immediate effect on other key variables such as risky riding intentions and the propensity for thrill seeking, although not significantly greater than the traditional standard training. A low response rate at the 12 month follow-up unfortunately prevented any firm conclusions being drawn regarding the impact of the pilot program on self-reported risky riding once licensed. Study 3a further showed that the use of intermediate outcomes such as self-reported attitudes and intentions for evaluation purposes provides insights into the mechanisms underpinning risky riding that can be changed by education and training. A multifaceted process evaluation conducted in Study 3b confirmed that the intervention pilot was largely delivered as designed, with course participants also rating most aspects of training delivery highly. The complete program of research contributed to the overall body of knowledge relating to motorcycle rider training, with some potential implications for policy in the area of motorcycle rider licensing. A key finding of the research was that psychosocial influences on risky riding can be shaped by structured education that focuses on awareness raising at a personal level and provides strategies to manage future riding situations. However, the formative evaluation was mainly designed to identify areas of improvement for the Three Steps to Safer Riding program and found several areas of potential refinement to improve future efficacy of the program. This included aspects of program content, program delivery, resource development, and measurement tools. The planned future follow-up of program participants' official crash and traffic offence records over time may lend further support for the application of the program within licensing systems. The findings reported in this thesis offer an initial indication that the Three Steps to Safer Riding is a useful resource to accompany skills-based training programs.
Resumo:
Background & aims The confounding effect of disease on the outcomes of malnutrition using diagnosis-related groups (DRG) has never been studied in a multidisciplinary setting. This study aims to determine the impact of malnutrition on hospitalisation outcomes, controlling for DRG. Methods Subjective Global Assessment was used to assess the nutritional status of 818 patients within 48 hours of admission. Prospective data were collected on cost of hospitalisation, length of stay (LOS), readmission and mortality up to 3 years post-discharged using National Death Register data. Mixed model analysis and conditional logistic regression matching by DRG were carried out to evaluate the association between nutritional status and outcomes, with the results adjusted for gender, age and race. Results Malnourished patients (29%) had longer hospital stays (6.9±7.3 days vs. 4.6±5.6 days, p<0.001) and were more likely to be readmitted within 15 days (adjusted relative risk = 1.9, 95%CI 1.1–3.2, p=0.025). Within a DRG, the mean difference between actual cost of hospitalisation and the average cost for malnourished patients was greater than well-nourished patients (p=0.014). Mortality was higher in malnourished patients at 1 year (34% vs. 4.1 %), 2 years (42.6% vs. 6.7%) and 3 years (48.5% vs. 9.9%); p<0.001 for all. Overall, malnutrition was a significant predictor of mortality (adjusted hazard ratio = 4.4, 95%CI 3.3-6.0, p<0.001). Conclusions Malnutrition was evident in up to one third of inpatients and led to poor hospitalisation outcomes, even after matching for DRG. Strategies to prevent and treat malnutrition in the hospital and post-discharge are needed.
Resumo:
Neuromuscular electrical stimulation (NMES) has been consistently demonstrated to improve skeletal muscle function in neurological populations with movement disorders, such as poststroke and incomplete spinal cord injury (Vanderthommen and Duchateau, 2007). Recent research has documented that rapid, supraspinal central nervous system reorganisation/neuroplastic mechanisms are also implicated during NMES (Chipchase et al., 2011). Functional neuroimaging studies have shown NMES to activate a network of sub-cortical and cortical brain regions, including the sensorimotor (SMC) and prefrontal (PFC) cortex (Blickenstorfer et al., 2009; Han et al., 2003; Muthalib et al., 2012). A relationship between increase in SMC activation with increasing NMES current intensity up to motor threshold has been previously reported using functional MRI (Smith et al., 2003). However, since clinical neurorehabilitation programmes commonly utilise NMES current intensities above the motor threshold and up to the maximum tolerated current intensity (MTI), limited research has determined the cortical correlates of increasing NMES current intensity at or above MTI (Muthalib et al., 2012). In our previous study (Muthalib et al., 2012), we assessed contralateral PFC activation using 1-channel functional near infrared spectroscopy (fNIRS) during NMES of the elbow flexors by increasing current intensity from motor threshold to greater than MTI and showed a linear relationship between NMES current intensity and the level of PFC activation. However, the relationship between NMES current intensity and activation of the motor cortical network, including SMC and PFC, has not been clarified. Moreover, it is of scientific and clinical relevance to know how NMES affects the central nervous system, especially in comparison to voluntary (VOL) muscle activation. Therefore, the aim of this study was to utilise multi-channel time domain fNIRS to compare SMC and PFC activation between VOL and NMESevoked wrist extension movements.
Resumo:
Scooter and moped sales have increased at a faster rate than motorcycle sales over the last decade in countries such as Australia, Canada and the United States. This may be particularly evident in jurisdictions where moped riding is permitted for car license holders and a motorcycle license is not required, such as in Queensland, Australia. Having historically comprised only a small proportion of powered two-wheelers (PTWs) outside of Europe and Asia, the safety of scooters and mopeds has received relatively little focused research attention. However, the recent trends in sales and crash involvement have stimulated greater interest in these PTW types. The current paper examines differences and similarities between scooters (over 50cc), mopeds (up to 50cc) and motorcycles in crash involvement and crash characteristics through analyses of crash and registration data from Queensland, Australia. The main findings include that moped and scooter riders are similar in terms of usage patterns, but the evidence suggests superior skills, greater experience and safer behaviour among scooter riders than moped riders. The requirement in Queensland for scooter riders but not moped riders to hold a motorcycle license, usually obtained through competency-based training and assessment, may help to explain some of this difference. Findings also suggest that scooter riders are safer than motorcycle riders in some respects, despite both being subject to the same licensing requirements which encourage participation in rider training. Safer attitudes and motivations rather than superior skills and knowledge may therefore underlie the differences between scooter and motorcycle riders. In summary, riders of larger scooters exhibit a combination of skills and behavior suggestive of safer riding than both their moped and motorcycle riding counterparts. It is reasonable to expect that mopeds and scooters will remain popular and that their usage may increase further, along with that of motorcycles. This research therefore has important practical implications regarding pathways to improved PTW safety. Future policy and planning should consider options for encouraging moped riders to acquire better riding skills and greater safety awareness, as apparent among scooter riders, including rider training, education and licensing. As is noted in recent literature and reflected in some contemporary rider training programs, motorcycle safety may be improved by addressing rider attitudes more comprehensively in addition to developing skills and knowledge.