943 resultados para MORPHOGENETIC MOVEMENTS
Resumo:
Limb movement imparts a perturbation to the body. The impact of that perturbation is limited via anticipatory postural adjustments. The strategy by which the CNS controls anticipatory postural adjustments of the trunk muscles during limb movement is altered during acute back pain and in people with recurrent back pain, even when they are pain free. The altered postural strategy probably serves to protect the spine in the short term, but it is associated with a cost and is thought to predispose spinal structures to injury in the long term. It is not known why this protective strategy might occur even when people are pain free, but one possibility is that it is caused by the anticipation of back pain. In eight healthy subjects, recordings of intramuscular EMG were made from the trunk muscles during single and repetitive arm movements. Anticipation of experimental back pain and anticipation of experimental elbow pain were elicited by the threat of painful cutaneous stimulation. There was no effect of anticipated experimental elbow pain on postural adjustments. During anticipated experimental back pain, for single arm movements there was delayed activation of the deep trunk muscles and augmentation of at least one superficial trunk muscle. For repetitive arm movements, there was decreased activity and a shift from biphasic to monophasic activation of the deep trunk muscles and increased activity of superficial trunk muscles during anticipation of back pain. In both instances, the changes were consistent with adoption of an altered strategy for postural control and were similar to those observed in patients with recurrent back pain. We conclude that anticipation of experimental back pain evokes a protective postural strategy that stiffens the spine. This protective strategy is associated with compressive cost and is thought to predispose to spinal injury if maintained long term. © Guarantors of Brain 2004; all rights reserved
Resumo:
The primary objective of this study was to assess the lingual kinematic strategies used by younger and older adults to increase rate of speech. It was hypothesised that the strategies used by the older adults would differ from the young adults either as a direct result of, or in response to a need to compensate for, age-related changes in the tongue. Electromagnetic articulography was used to examine the tongue movements of eight young (M526.7 years) and eight older (M567.1 years) females during repetitions of /ta/ and /ka/ at a controlled moderate rate and then as fast as possible. The younger and older adults were found to significantly reduce consonant durations and increase syllable repetition rate by similar proportions. To achieve these reduced durations both groups appeared to use the same strategy, that of reducing the distances travelled by the tongue. Further comparisons at each rate, however, suggested a speed-accuracy trade-off and increased speech monitoring in the older adults. The results may assist in differentiating articulatory changes associated with normal aging from pathological changes found in disorders that affect the older population.
Resumo:
Protestors with banner during the Moratorium march in Brisbane Australia, September 18 1970.
Resumo:
Group of people during visit of former South Vietnamese vice president Nguyen Cao Ky to Brisbane, Australia in January 1967.
Resumo:
Group of people including Hughie Hamilton, Alex McDonald and Vilma Ward during visit of former South Vietnamese vice president Nguyen Cao Ky to Brisbane, Australia in January 1967.
Resumo:
Group of people outside the Sub Inspector Office during visit of former South Vietnamese vice president Nguyen Cao Ky to Brisbane, Australia in January 1967.
Resumo:
Worker cleaning up leaflets after demonstration during visit to Brisbane of Former South Vietnamese vice president Nguyen Cao Ky in January 1967.
Resumo:
Leaflets in gutter after demonstration of former South Vietnamese vice president Nguyen Cao Ky to Brisbane, Australia in January 1967.
Resumo:
Group of marchers during Mayday procession 1966 Brisbane, Australia including children and dog. The group is passing Pearl Assurance House in Queen Street, Brisbane. Marchers have flags and banners relating to anti war and anti nuclear tests.
Resumo:
Girl with dog during Mayday procession 1966 Brisbane, Australia. Bystanders including policeman are outside the Bank of New South Wales building in Queen Street, Brisbane.
Resumo:
Reaching to interact with an object requires a compromise between the speed of the limb movement and the required end-point accuracy. The time it takes one hand to move to a target in a simple aiming task can be predicted reliably from Fitts' law, which states that movement time is a function of a combined measure of amplitude and accuracy constraints (the index of difficulty, ID). It has been assumed previously that Fitts' law is violated in bimanual aiming movements to targets of unequal ID. We present data from two experiments to show that this assumption is incorrect: if the attention demands of a bimanual aiming task are constant then the movements are well described by a Fitts' law relationship. Movement time therefore depends not only on ID but on other task conditions, which is a basic feature of Fitts' law. In a third experiment we show that eye movements are an important determinant of the attention demands in a bimanual aiming task. The results from the third experiment extend the findings of the first two experiments and show that bimanual aiming often relies on the strategic co-ordination of separate actions into a seamless behaviour. A number of the task specific strategies employed by the adult human nervous system were elucidated in the third experiment. The general strategic pattern observed in the hand trajectories was reflected by the pattern of eye movements recorded during the experiment. The results from all three experiments demonstrate that eye movements must be considered as an important constraint in bimanual aiming tasks.
Resumo:
Results of two experiments are reported that examined how people respond to rectangular targets of different sizes in simple hitting tasks. If a target moves in a straight line and a person is constrained to move along a linear track oriented perpendicular to the targetrsquos motion, then the length of the target along its direction of motion constrains the temporal accuracy and precision required to make the interception. The dimensions of the target perpendicular to its direction of motion place no constraints on performance in such a task. In contrast, if the person is not constrained to move along a straight track, the targetrsquos dimensions may constrain the spatial as well as the temporal accuracy and precision. The experiments reported here examined how people responded to targets of different vertical extent (height): the task was to strike targets that moved along a straight, horizontal path. In experiment 1 participants were constrained to move along a horizontal linear track to strike targets and so target height did not constrain performance. Target height, length and speed were co-varied. Movement time (MT) was unaffected by target height but was systematically affected by length (briefer movements to smaller targets) and speed (briefer movements to faster targets). Peak movement speed (Vmax) was influenced by all three independent variables: participants struck shorter, narrower and faster targets harder. In experiment 2, participants were constrained to move in a vertical plane normal to the targetrsquos direction of motion. In this task target height constrains the spatial accuracy required to contact the target. Three groups of eight participants struck targets of different height but of constant length and speed, hence constant temporal accuracy demand (different for each group, one group struck stationary targets = no temporal accuracy demand). On average, participants showed little or no systematic response to changes in spatial accuracy demand on any dependent measure (MT, Vmax, spatial variable error). The results are interpreted in relation to previous results on movements aimed at stationary targets in the absence of visual feedback.
Resumo:
This experiment investigated whether the stability of rhythmic unimanual movements is primarily a function of perceptual/spatial orientation or neuro-mechanical in nature. Eight participants performed rhythmic flexion and extension movements of the left wrist for 30 s at a frequency of 2.25 Hz paced by an auditory metronome. Each participant performed 8 flex-on-the-beat trials and 8 extend-on-the-beat trials in one of two load conditions, loaded and unload. In the loaded condition, a servo-controlled torque motor was used to apply a small viscous load that resisted the flexion phase of the movement only. Both the amplitude and frequency of the movement generated in the loaded and unloaded conditions were statistically equivalent. However, in the loaded condition movements in which participants were required to flex-on-the-beat became less stable (more variable) while extend-on-the-beat movements remained unchanged compared with the unload condition. The small alteration in required muscle force was sufficient to result in reliable changes in movement stability even a situation where the movement kinematics were identical. These findings support the notion that muscular constraints, independent of spatial dependencies, can be sufficiently strong to reliably influence coordination in a simple unimanual task.
Resumo:
Rhythmic movements brought about by the contraction of muscles on one side of the body give rise to phase-locked changes in the excitability of the homologous motor pathways of the opposite limb. Such crossed facilitation should favour patterns of bimanual coordination in which homologous muscles are engaged simultaneously, and disrupt those in which the muscles are activated in an alternating fashion. In order to examine these issues, we obtained responses to transcranial magnetic stimulation (TMS), to stimulation of the cervicomedullary junction (cervicomedullary-evoked potentials, CMEPs), to peripheral nerve stimulation (H-reflexes and f-waves), and elicited stretch reflexes in the relaxed right flexor carpi radialis (FCR) muscle during rhythmic (2 Hz) flexion and extension movements of the opposite (left) wrist. The potentials evoked by TMS in right FCR were potentiated during the phases of movement in which the left FCR was most strongly engaged. In contrast, CMEPs were unaffected by the movements of the opposite limb. These results suggest that there was systematic variation of the excitability of the motor cortex ipsilateral to the moving limb. H-reflexes and stretch reflexes recorded in right FCR were modulated in phase with the activation of left FCR. As the f-waves did not vary in corresponding fashion, it appears that the phasic modulation of the H-reflex was mediated by presynaptic inhibition of Ia afferents. The observation that both H-reflexes and f-waves were depressed markedly during movements of the opposite indicates that there may also have been postsynaptic inhibition or disfacilitation of the largest motor units. Our findings indicate that the patterned modulation of excitability in motor pathways that occurs during rhythmic movements of the opposite limb is mediated primarily by interhemispheric interactions between cortical motor areas.
Resumo:
The coordination of movement is governed by a coalition of constraints. The expression of these constraints ranges from the concrete—the restricted range of motion offered by the mechanical configuration of our muscles and joints; to the abstract—the difficulty that we experience in combining simple movements into complex rhythms. We seek to illustrate that the various constraints on coordination are complementary and inclusive, and the means by which their expression and interaction are mediated systematically by the integrative action of the central nervous system (CNS). Beyond identifying the general principles at the behavioural level that govern the mutual interplay of constraints, we attempt to demonstrate that these principles have as their foundation specific functional properties of the cortical motor systems. We propose that regions of the brain upstream of the motor cortex may play a significant role in mediating interactions between the functional representations of muscles engaged in sensorimotor coordination tasks. We also argue that activity in these ldquosupramotorrdquo regions may mediate the stabilising role of augmented sensory feedback.