937 resultados para M CODES
Resumo:
The Finite Element Method (FEM) is a way of numerical solution applied in different areas, as simulations used in studies to improve cardiac ablation procedures. For this purpose, the meshes should have the same size and histological features of the focused structures. Some methods and tools used to generate tetrahedral meshes are limited mainly by the use conditions. In this paper, the integration of Open Source Softwares is presented as an alternative to solid modeling and automatic mesh generation. To demonstrate its efficiency, the cardiac structures were considered as a first application context: atriums, ventricles, valves, arteries and pericardium. The proposed method is feasible to obtain refined meshes in an acceptable time and with the required quality for simulations using FEM.
Resumo:
Cognitive radio is a growing zone in wireless communication which offers an opening in complete utilization of incompetently used frequency spectrum: deprived of crafting interference for the primary (authorized) user, the secondary user is indorsed to use the frequency band. Though, scheming a model with the least interference produced by the secondary user for primary user is a perplexing job. In this study we proposed a transmission model based on error correcting codes dealing with a countable number of pairs of primary and secondary users. However, we obtain an effective utilization of spectrum by the transmission of the pairs of primary and secondary users' data through the linear codes with different given lengths. Due to the techniques of error correcting codes we developed a number of schemes regarding an appropriate bandwidth distribution in cognitive radio.
Resumo:
This study establishes that for a given binary BCH code C0 n of length n generated by a polynomial g(x) ∈ F2[x] of degree r there exists a family of binary cyclic codes {Cm 2m−1(n+1)n}m≥1 such that for each m ≥ 1, the binary cyclic code Cm 2m−1(n+1)n has length 2m−1(n + 1)n and is generated by a generalized polynomial g(x 1 2m ) ∈ F2[x, 1 2m Z≥0] of degree 2mr. Furthermore, C0 n is embedded in Cm 2m−1(n+1)n and Cm 2m−1(n+1)n is embedded in Cm+1 2m(n+1)n for each m ≥ 1. By a newly proposed algorithm, codewords of the binary BCH code C0 n can be transmitted with high code rate and decoded by the decoder of any member of the family {Cm 2m−1(n+1)n}m≥1 of binary cyclic codes, having the same code rate.
Resumo:
In this paper, we present a new construction and decoding of BCH codes over certain rings. Thus, for a nonnegative integer t, let A0 ⊂ A1 ⊂···⊂ At−1 ⊂ At be a chain of unitary commutative rings, where each Ai is constructed by the direct product of appropriate Galois rings, and its projection to the fields is K0 ⊂ K1 ⊂···⊂ Kt−1 ⊂ Kt (another chain of unitary commutative rings), where each Ki is made by the direct product of corresponding residue fields of given Galois rings. Also, A∗ i and K∗ i are the groups of units of Ai and Ki, respectively. This correspondence presents a construction technique of generator polynomials of the sequence of Bose, Chaudhuri, and Hocquenghem (BCH) codes possessing entries from A∗ i and K∗ i for each i, where 0 ≤ i ≤ t. By the construction of BCH codes, we are confined to get the best code rate and error correction capability; however, the proposed contribution offers a choice to opt a worthy BCH code concerning code rate and error correction capability. In the second phase, we extend the modified Berlekamp-Massey algorithm for the above chains of unitary commutative local rings in such a way that the error will be corrected of the sequences of codewords from the sequences of BCH codes at once. This process is not much different than the original one, but it deals a sequence of codewords from the sequence of codes over the chain of Galois rings.
Resumo:
In this paper, we present a decoding principle for Goppa codes constructed by generalized polynomials, which is based on modified Berlekamp-Massey algorithm. This algorithm corrects all errors up to the Hamming weight $t\leq 2r$, i.e., whose minimum Hamming distance is $2^{2}r+1$.
Resumo:
For a positive integer $t$, let \begin{equation*} \begin{array}{ccccccccc} (\mathcal{A}_{0},\mathcal{M}_{0}) & \subseteq & (\mathcal{A}_{1},\mathcal{M}_{1}) & \subseteq & & \subseteq & (\mathcal{A}_{t-1},\mathcal{M}_{t-1}) & \subseteq & (\mathcal{A},\mathcal{M}) \\ \cap & & \cap & & & & \cap & & \cap \\ (\mathcal{R}_{0},\mathcal{M}_{0}^{2}) & & (\mathcal{R}_{1},\mathcal{M}_{1}^{2}) & & & & (\mathcal{R}_{t-1},\mathcal{M}_{t-1}^{2}) & & (\mathcal{R},\mathcal{M}^{2}) \end{array} \end{equation*} be a chain of unitary local commutative rings $(\mathcal{A}_{i},\mathcal{M}_{i})$ with their corresponding Galois ring extensions $(\mathcal{R}_{i},\mathcal{M}_{i}^{2})$, for $i=0,1,\cdots,t$. In this paper, we have given a construction technique of the cyclic, BCH, alternant, Goppa and Srivastava codes over these rings. Though, initially in \cite{AP} it is for local ring $(\mathcal{A},\mathcal{M})$, in this paper, this new approach have given a choice in selection of most suitable code in error corrections and code rate perspectives.
Resumo:
A Goppa code is described in terms of a polynomial, known as Goppa polynomial, and in contrast to cyclic codes, where it is difficult to estimate the minimum Hamming distance d from the generator polynomial. Furthermore, a Goppa code has the property that d ≥ deg(h(X))+1, where h(X) is a Goppa polynomial. In this paper, we present a decoding principle for Goppa codes constructed by generalized polynomials, which is based on modified Berlekamp-Massey algorithm.
Resumo:
In this paper, we introduced new construction techniques of BCH, alternant, Goppa, Srivastava codes through the semigroup ring B[X; 1 3Z0] instead of the polynomial ring B[X; Z0], where B is a finite commutative ring with identity, and for these constructions we improve the several results of [1]. After this, we present a decoding principle for BCH, alternant and Goppa codes which is based on modified Berlekamp-Massey algorithm. This algorithm corrects all errors up to the Hamming weight t ≤ r/2, i.e., whose minimum Hamming distance is r + 1.
Resumo:
The frequency spectrums are inefficiently utilized and cognitive radio has been proposed for full utilization of these spectrums. The central idea of cognitive radio is to allow the secondary user to use the spectrum concurrently with the primary user with the compulsion of minimum interference. However, designing a model with minimum interference is a challenging task. In this paper, a transmission model based on cyclic generalized polynomial codes discussed in [2] and [15], is proposed for the improvement in utilization of spectrum. The proposed model assures a non interference data transmission of the primary and secondary users. Furthermore, analytical results are presented to show that the proposed model utilizes spectrum more efficiently as compared to traditional models.
Resumo:
Let B[X; S] be a monoid ring with any fixed finite unitary commutative ring B and is the monoid S such that b = a + 1, where a is any positive integer. In this paper we constructed cyclic codes, BCH codes, alternant codes, Goppa codes, Srivastava codes through monoid ring . For a = 1, almost all the results contained in [16] stands as a very particular case of this study.