909 resultados para Lymphocyte T CD8
Resumo:
GM-CSF is a potent proinflammatory cytokine that plays a pathogenic role in the CNS inflammatory disease experimental autoimmune encephalomyelitis. As IL-27 alleviates experimental autoimmune encephalomyelitis, we hypothesized that IL-27 suppresses GM-CSF expression by T cells. We found that IL-27 suppressed GM-CSF expression in CD4+ and CD8+ T cells in splenocyte and purified T cell cultures. IL-27 suppressed GM-CSF in Th1, but not Th17, cells. IL-27 also suppressed GM-CSF expression by human T cells in nonpolarized and Th1- but not Th17-polarized PBMC cultures. In vivo, IL-27p28 deficiency resulted in increased GM-CSF expression by CNS-infiltrating T cells during Toxoplasma gondii infection. Although in vitro suppression of GM-CSF by IL-27 was independent of IL-2 suppression, IL-10 upregulation, or SOCS3 signaling, we observed that IL-27-driven suppression of GM-CSF was STAT1 dependent. Our findings demonstrate that IL-27 is a robust negative regulator of GM-CSF expression in T cells, which likely inhibits T cell pathogenicity in CNS inflammation.
Resumo:
Measles remains a significant childhood disease, and is associated with a transient immune suppression. Paradoxically, measles virus (MV) infection also induces robust MV-specific immune responses. Current hypotheses for the mechanism underlying measles immune suppression focus on functional impairment of lymphocytes or antigen-presenting cells, caused by infection with or exposure to MV. We have generated stable recombinant MVs that express enhanced green fluorescent protein, and remain virulent in non-human primates. By performing a comprehensive study of virological, immunological, hematological and histopathological observations made in animals euthanized at different time points after MV infection, we developed a model explaining measles immune suppression which fits with the "measles paradox". Here we show that MV preferentially infects CD45RA - memory T-lymphocytes and follicular B-lymphocytes, resulting in high infection levels in these populations. After the peak of viremia MV-infected lymphocytes were cleared within days, followed by immune activation and lymph node enlargement. During this period tuberculin-specific T-lymphocyte responses disappeared, whilst strong MV-specific T-lymphocyte responses emerged. Histopathological analysis of lymphoid tissues showed lymphocyte depletion in the B- and T-cell areas in the absence of apoptotic cells, paralleled by infiltration of T-lymphocytes into B-cell follicles and reappearance of proliferating cells. Our findings indicate an immune-mediated clearance of MV-infected CD45RA - memory T-lymphocytes and follicular B-lymphocytes, which causes temporary immunological amnesia. The rapid oligoclonal expansion of MV-specific lymphocytes and bystander cells masks this depletion, explaining the short duration of measles lymphopenia yet long duration of immune suppression. © 2012 de Vries et al.
Resumo:
Interleukin 12 (IL-12), a central cytokine acting on T and natural killer (NK) cells, directs proliferation of activated T lymphocytes towards a Th1 phenotype. The heterodimeric molecule IL-12p70, equates with IL-12 biological activity, while IL-12p40 may antagonize IL-12 and inhibit cytotoxic T lymphocyte (CTL) generation in vitro. This study characterizes age-related changes in serum total IL-12, IL-12p70 and IL-12p40 relating them with CD3(+), NK and related subsets from subjects, aged 30-96 years. Total IL-12, IL-12p40 and the IL-12p40/IL-12p70 ratio, but not IL-12p70, increased significantly with age (P
Resumo:
The efficacious delivery of antigens to antigen-presenting cells (APCs), in particular, to dendritic cells (DCs), and their subsequent activation remains a significant challenge in the development of effective vaccines. This study highlights the potential of dissolving microneedle (MN) arrays laden with nanoencapsulated antigen to increase vaccine immunogenicity by targeting antigen specifically to contiguous DC networks within the skin. Following in situ uptake, skin-resident DCs were able to deliver antigen-encapsulated poly-d,l-lactide-co-glycolide (PGLA) nanoparticles to cutaneous draining lymph nodes where they subsequently induced significant expansion of antigen-specific T cells. Moreover, we show that antigen-encapsulated nanoparticle vaccination via microneedles generated robust antigen-specific cellular immune responses in mice. This approach provided complete protection in vivo against both the development of antigen-expressing B16 melanoma tumors and a murine model of para-influenza, through the activation of antigen-specific cytotoxic CD8(+) T cells that resulted in efficient clearance of tumors and virus, respectively. In addition, we show promising findings that nanoencapsulation facilitates antigen retention into skin layers and provides antigen stability in microneedles. Therefore, the use of biodegradable polymeric nanoparticles for selective targeting of antigen to skin DC subsets through dissolvable MNs provides a promising technology for improved vaccination efficacy, compliance, and coverage.
Resumo:
<p>Aflatoxin B1 (AFB1), a mycotoxin produced by Aspergillus flavus or A. parasiticus, is a frequent contaminant of food and feed. This toxin is hepatotoxic and immunotoxic. The present study analyzed in pigs the influence of AFB1 on humoral and cellular responses, and investigated whether the immunomodulation observed is produced through interference with cytokine expression. For 28 days, pigs were fed a control diet or a diet contaminated with 385, 867 or 1807 mu g pure AFB1/kg feed. At days 4 and 15, pigs were vaccinated with ovalbumin. AFB1 exposure, confirmed by an observed dose-response in blood aflatoxin-albumin adduct, had no major effect on humoral immunity as measured by plasma concentrations of total IgA, IgG and IgM and of anti-ovalbumin IgG. Toxin exposure did not impair the mitogenic response of lymphocytes but delayed and decreased their specific proliferation in response to the vaccine antigen, suggesting impaired lymphocyte activation in pigs exposed to AFB1. The expression level of pro-inflammatory (TNF-alpha, IL-1 beta, IL-6, IFN-gamma) and regulatory (IL-10) cytokines was assessed by real-time PCR in spleen. A significant up-regulation of all 5 cytokines was observed in spleen from pigs exposed to the highest dose of AFB1. In pigs exposed to the medium dose, IL-6 expression was increased and a trend towards increased IFN-gamma and IL-10 was observed. In addition we demonstrate that IL-6 impaired in vitro the antigenic- but not the mitogenic-induced proliferation of lymphocytes from control pigs vaccinated with ovalbumin. These results indicate that AFB1 dietary exposure decreases cell-mediated immunity while inducing an inflammatory response. These impairments in the immune response could participate in failure of vaccination protocols and increased susceptibility to infections described in pigs exposed to AFB1. (C) 2008 Elsevier Inc. All rights reserved.</p>
Resumo:
The case of an 82-year-old man who developed intraocular extension from mycosis fungoides, a cutaneous T-cell lymphoma, is presented. The patient died soon after intra-ocular involvement occurred. Immunohistochemistry of a skin biopsy, taken early in the course of the disease, disclosed a predominance of T cells with a helper/inducer phenotype (CD4). However, an intraocular infiltrate obtained 7 years later contained mostly T cells with a suppressor/cytotoxic phenotype (CD8). The occurrence of ocular invasion, the change in immunophenotype, and the predominant proliferation of CD8 lymphocytes may have been related to the poor outcome in this patient.
Resumo:
Bacillus anthracis secretes exotoxins which act through several mechanisms including those that can subvert adaptive immunity with respect both to antigen presenting cell and T cell function. The combination of Protective Antigen (PA) and Lethal Factor (LF) forming Lethal Toxin (LT), acts within host cells to down-regulate the mitogen activated protein kinase (MAPK) signaling cascade. Until recently the MAPK kinases were the only known substrate for LT; over the past few years it has become evident that LT also cleaves Nlrp1, leading to inflammasome activation and macrophage death. The predicted downstream consequences of subverting these important cellular pathways are impaired antigen presentation and adaptive immunity. In contrast to this, recent work has indicated that robust memory T cell responses to B. anthracis antigens can be identified following natural anthrax infection. We discuss how LT affects the adaptive immune response and specifically the identification of B. anthracis epitopes that are both immunogenic and protective with the potential for inclusion in protein sub-unit based vaccines.
Th1 not Th17 cells drive spontaneous MS-like disease despite a functional regulatory T cell response
Resumo:
Multiple sclerosis is considered a disease of complex autoimmune etiology, yet there remains a lack of consensus as to specific immune effector mechanisms. Recent analyses of experimental autoimmune encephalomyelitis, the common mouse model of multiple sclerosis, have investigated the relative contribution of Th1 and Th17 CD4 T cell subsets to initial autoimmune central nervous system (CNS) damage. However, inherent in these studies are biases influenced by the adjuvant and toxin needed to break self-tolerance. We investigated spontaneous CNS disease in a clinically relevant, humanized, T cell receptor transgenic mouse model. Mice develop spontaneous, ascending paralysis, allowing unbiased characterization of T cell immunity in an HLA-DR15-restricted T cell repertoire. Analysis of naturally progressing disease shows that IFN?(+) cells dominate disease initiation with IL-17(+) cells apparent in affected tissue only once disease is established. Tregs accumulate in the CNS but are ultimately ineffective at halting disease progression. However, ablation of Tregs causes profound acceleration of disease, with uncontrolled infiltration of lymphocytes into the CNS. This synchronous, severe disease allows characterization of the responses that are deregulated in exacerbated disease: the correlation is with increased CNS CD4 and CD8 IFN? responses. Recovery of the ablated Treg population halts ongoing disease progression and Tregs extracted from the central nervous system at peak disease are functionally competent to regulate myelin specific T cell responses. Thus, in a clinically relevant mouse model of MS, initial disease is IFN? driven and the enhanced central nervous system responses unleashed through Treg ablation comprise IFN? cytokine production by CD4 and CD8 cells, but not IL-17 responses.
Resumo:
Background: Natural Killer Cells (NK) play an important role in detection and elimination of virus-infected, damaged or cancer cells. NK cell function is guided by expression of Killer Immunoglobulin-like Receptors (KIRs) and contributed to by the cytokine milieu. KIR molecules are grouped on NK cells into stimulatory and inhibitory KIR haplotypes A and B, through which NKs sense and tolerate HLA self-antigens or up-regulate the NK-cytotoxic response to cells with altered HLA self-antigens, damaged by viruses or tumours. We have previously described increased numbers of NK and NK-related subsets in association with sIL-2R cytokine serum levels in BELFAST octo/nonagenarians. We hypothesised that changes in KIR A and B haplotype gene frequencies could explain the increased cytokine profiles and NK compartments previously described in Belfast Elderly Longitudinal Free-living Aging STudy (BELFAST) octo/nonagenarians, who show evidence of ageing well.<br/><br/>Results: In the BELFAST study, 24% of octo/nonagenarians carried the KIR A haplotype and 76% KIR B haplotype with no differences for KIR A haplogroup frequency between male or female subjects (23% v 24%; p=0.88) or for KIR B haplogroup (77% v 76%; p=0.99). Octo/nonagenarian KIR A haplotype carriers showed increased NK numbers and percentage compared to Group B KIR subjects (p=0.003; p=0.016 respectively). There were no KIR A/ B haplogroup-associated changes for related CD57+CD8 (high or low) subsets. Using logistic regression, KIR B carriers were predicted to have higher IL-12 cytokine levels compared to KIR A carriers by about 3% (OR 1.03, confidence limits CI 0.99–1.09; p=0.027) and 14% higher levels for TGF-ß (active), a cytokine with an anti-inflammatory role, (OR 1.14, confidence limits CI 0.99–1.09; p=0.002).<br/><br/>Conclusion: In this observational study, BELFAST octo/nonagenarians carrying KIR A haplotype showed higher NK cell numbers and percentage compared to KIR B carriers. Conversely, KIR B haplotype carriers, with genes encoding for activating KIRs, showed a tendency for higher serum pro-inflammatory cytokines compared to KIR A carriers. While the findings in this study should be considered exploratory they may serve to stimulate debate about the immune signatures of those who appear to age slowly and who represent a model for good quality survivor-hood.© 2013 Rea et al.; licensee BioMed Central Ltd.
Resumo:
Reliable detection of JAK2-V617F is critical for accurate diagnosis of myeloproliferative neoplasms (MPNs); in addition, sensitive mutation-specific assays can be applied to monitor disease response. However, there has been no consistent approach to JAK2-V617F detection, with assays varying markedly in performance, affecting clinical utility. Therefore, we established a network of 12 laboratories from seven countries to systematically evaluate nine different DNA-based quantitative PCR (qPCR) assays, including those in widespread clinical use. Seven quality control rounds involving over 21,500 qPCR reactions were undertaken using centrally distributed cell line dilutions and plasmid controls. The two best-performing assays were tested on normal blood samples (n=100) to evaluate assay specificity, followed by analysis of serial samples from 28 patients transplanted for JAK2-V617F-positive disease. The most sensitive assay, which performed consistently across a range of qPCR platforms, predicted outcome following transplant, with the mutant allele detected a median of 22 weeks (range 6-85 weeks) before relapse. Four of seven patients achieved molecular remission following donor lymphocyte infusion, indicative of a graft vs MPN effect. This study has established a robust, reliable assay for sensitive JAK2-V617F detection, suitable for assessing response in clinical trials, predicting outcome and guiding management of patients undergoing allogeneic transplant.
Resumo:
Signalling lymphocyte activation molecule (SLAM) has been identified as an immune cell receptor for the morbilliviruses, measles (MV), canine distemper (CDV), rinderpest and peste des petits ruminants (PPRV) viruses, while CD46 is a receptor for vaccine strains of MV. More recently poliovirus like receptor 4 (PVRL4), also known as nectin 4, has been identified as a receptor for MV, CDV and PPRV on the basolateral surface of polarised epithelial cells. PVRL4 is also up-regulated by MV in human brain endothelial cells. Utilisation of PVRL4 as a receptor by phocine distemper virus (PDV) remains to be demonstrated as well as confirmation of use of SLAM. We have observed that unlike wild type (wt) MV or wtCDV, wtPDV strains replicate in African green monkey kidney Vero cells without prior adaptation, suggesting the use of a further receptor. We therefore examined candidate molecules, glycosaminoglycans (GAG) and the tetraspan proteins, integrin β and the membrane bound form of heparin binding epithelial growth factor (proHB-EGF),for receptor usage by wtPDV in Vero cells. We show that wtPDV replicates in Chinese hamster ovary (CHO) cells expressing SLAM and PVRL4. Similar wtPDV titres are produced in Vero and VeroSLAM cells but more limited fusion occurs in the latter. Infection of Vero cells was not inhibited by anti-CD46 antibody. Removal/disruption of GAG decreased fusion but not the titre of virus. Treatment with anti-integrin β antibody increased rather than decreased infection of Vero cells by wtPDV. However, infection was inhibited by antibody to HB-EGF and the virus replicated in CHO-proHB-EGF cells, indicating use of this molecule as a receptor. Common use of SLAM and PVRL4 by morbilliviruses increases the possibility of cross-species infection. Lack of a requirement for wtPDV adaptation to Vero cells raises the possibility of usage of proHB-EGF as a receptor in vivo but requires further investigation.
Resumo:
Dendritic cells (DCs) of the skin play an important role in skin-mediated immunity capable of promoting potent immune responses. We availed of polymeric dissolving microneedle (MN) arrays laden with nano-encapsulated antigen to specifically target skin DC networks. This modality of immunization represents an economic, efficient and potent means of antigen delivery directly to skin DCs, which are inefficiently targeted by more conventional immunization routes. Following MN immunization, Langerhans cells (LCs) constituted the major skin DC subset capable of cross-priming antigen-specific CD8(+) T cells ex-vivo. While all DC subsets were equally efficient in priming CD4(+) T cells, LCs were largely responsible for orchestrating the differentiation of CD4(+) IFN-γ and IL-17 producing effectors. Importantly, depletion of LCs prior to immunization had a profound effect on CD8(+) CTL responses in vivo, and vaccinated animals displayed reduced protective anti-tumour and viral immunity. Interestingly, this cross-priming bias was lost following MN immunization with soluble antigen, suggesting that processing and cross-presentation of nano-particulate antigen is favoured by LCs. Therefore, these studies highlight the importance of LCs in skin immunization strategies and that targeting of nano-particulate immunogens through dissolvable polymeric MNs potentially provides a promising technological platform for improved vaccination strategies.Journal of Investigative Dermatology accepted article preview online, 22 September 2014. doi:10.1038/jid.2014.415.
Resumo:
Macrophage migration inhibitory factor (MIF), which inhibits apoptosis and promotes angiogenesis, is expressed in cancers suppressing immune surveillance. Its biological role in human glioblastoma is, however, only poorly understood. We examined in-vivo expression of MIF in 166 gliomas and 23 normal control brains by immunohistochemistry. MIF immunoreactivity was enhanced in neoplastic astrocytes in WHO grade II glioma and increased significantly in higher tumour grades (III-IV). MIF expression was further assessed in 12 glioma cell lines in vitro. Quantitative RT-PCR showed that MIF mRNA expression was elevated up to 800-fold in malignant glioma cells compared with normal brain. This translated into high protein levels as assessed by immunoblotting of total cell lysates and by ELISA-based measurement of secreted MIF. Wild-type p53-retaining glioma cell lines expressed higher levels of MIF, which may be connected with the previously described role of MIF as a negative regulator of wild-type p53 signalling in tumour cells. Stable knockdown of MIF by shRNA in glioma cells significantly increased tumour cell susceptibility towards NK cell-mediated cytotoxicity. Furthermore, supernatant from mock-transfected cells, but not from MIF knockdown cells, induced downregulation of the activating immune receptor NKG2D on NK and CD8+ T cells. We thus propose that human glioma cell-derived MIF contributes to the immune escape of malignant gliomas by counteracting NK and cytotoxic T-cell-mediated tumour immune surveillance. Considering its further cell-intrinsic and extrinsic tumour-promoting effects and the availability of small molecule inhibitors, MIF seems to be a promising candidate for future glioma therapy.
Resumo:
<p>OBJECTIVE: To investigate the impact of tooth replacement on the nutritional status of partially dentate older patients, and, to compare two different tooth replacement strategies; conventional treatment using removable partial dentures and functionally orientated treatment based on the shortened dental arch.</p><p>BACKGROUND: Amongst older patients, diet plays a key role in disease prevention, as poor diets have been linked to numerous illnesses. Poor oral health and loss of teeth can have very significant negative effects on dietary intake and nutritional status for elderly patients. There is evidence that good oral health generally, has positive effects on the nutritional intake of older adults.</p><p>MATERIALS AND METHODS: A randomised, controlled clinical trial was designed to investigate the impact of tooth replacement on the nutritional status of partially dentate elders. Forty-four patients aged over 65 years completed the trial, with 21 allocated to conventional treatment and 23 allocated to functionally orientated treatment. Nutritional status was accessed at baseline and after treatment using the Mini Nutritional Assessment (MNA) and a range of haematological markers.</p><p>RESULTS: At baseline, relationships were observed between the number of occluding tooth contacts and some measures of nutritional status. As the number of contacts increased, MNA scores (R = 0.16), in addition to vitamin B12 (R = 0.21), serum folate (R = 0.32) and total lymphocyte count (R = 0.35), also increased. After treatment intervention, the only measure of nutritional status that showed a statistically significant improvement for both treatment groups was MNA score (p = 0.03). No significant between group differences were observed from analysis of the haematological data.</p><p>CONCLUSION: In this study, prosthodontic rehabilitation with both conventional treatment and functionally orientated treatment resulted in an improvement in MNA score. Haematological markers did not illustrate a clear picture of improvement in nutritional status for either treatment group.</p>
Resumo:
Objectives: The World Health Organisation has highlighted the paucity of research into the oral health needs of older adults. In particular, the relationships between oral health and nutritional status require further investigation and analysis. This study aimed to describe some of the relationships between the number of remaining occluding tooth contacts, oral health related quality of life and nutritional status of partially dentate older adults. <br/><br/>Methods: 45 partially dentate patients aged 65 years and older were recruited to the study after visiting a university dental hospital. An initial dental examination charted the remaining teeth including the number of occluding contacts. Oral health related quality of life was recorded using the 14 item Oral Health Impact Profile. Nutritional status was measured using the Mini Nutritional Assessment (MNA) in addition to biochemical analysis of a haematological sample. Correlation between data values was measured using a Pearson's correlation coefficient (r). <br/><br/>Results: The patient sample was made up of 44% males and 56% females with a mean age of 72.4 years (range 65-84 years). With increasing age the patients' oral health related quality of life scores improved. (r=-0.25) Within the sample the number of occluding tooth contacts ranged from 6 to 11. It was found that as the number of occluding contacts increased, better oral health related quality of life scores were recorded. (r=-0.30) Generally mini nutritional assessment scores improved with increasing numbers of tooth contacts. (r=0.14) In addition, as the number of occluding teeth contacts increased total lymphocyte count (r=0.35), vitamin B12 (r=0.22) and serum folate (r=0.06) all increased. <br/><br/>Conclusions: In older patients increased numbers of tooth contacts are associated with better oral health related quality of life. Increasing numbers of occluding contacts are also associated with better MNA scores and some haematological indicators of nutritional status.