951 resultados para Lucilius, Gaius, ca. 180-ca. 102 B.C.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fading of persistent luminescence in Sr2MgSi2O7:Eu2+,R3+ (R: Y, La-Nd, Sm-Lu) was studied combining thermoluminescence (TL) and room temperature (persistent) luminescence measurements to gain more information on the mechanism of persistent luminescence. The TL glow curves showed the main trap signal at ca. 80 degrees C, corresponding to 0.6 eV as the trap depth, with every R co-dopant. The TL measurements carried out with different irradiation times revealed the general order nature of the TL bands. The results obtained from the deconvolutions of the glow curves allowed the prediction of the fading of persistent luminescence with good accuracy, though only when using the Becquerel decay law. (C) 2012 Optical Society of America

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transplanted individuals in operational tolerance (OT) maintain long-term stable graft function after completely stopping immunosuppression. Understanding the mechanisms involved in OT can provide valuable information about pathways to human transplantation tolerance. Here we report that operationally tolerant individuals display quantitative and functional preservation of the B-c ell compartment in renal transplantation. OT exhibited normal numbers of circulating total B cells, naive, memory and regulatory B cells (Bregs) as well as preserved B-cell receptor repertoire, similar to healthy individuals. In addition, OT also displayed conserved capacity to activate the cluster of differentiation 40 (CD40)/signal transducer and activator of transcription 3 (STAT3) signaling pathway in Bregs, in contrast, with chronic rejection. Rather than expansion or higher activation, we show that the preservation of the B-cell compartment favors OT. Online address: http://www.molmed.org doi: 10.2119/molmed.2011.00281

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calcium (Ca) and boron (B) have been reported as the major macro-and micronutrient required for castor bean plant yield. The objective of this study was to determine the Ca: B ratios (in the growth media and plant tissue) for fruit yield and shoot dry weight of the castor bean (Ricinus communis L.), grown in a nutrient solution, and to evaluate Ca and B supply on concentration and total uptake of Ca, potassium (K), magnesium (Mg), and B, as well on the seed oil content. The treatments were arranged in a 3 x 3 factorial fashion, consisting of three rates of Ca (40, 80, and 160 mg L-1) and three of B (0.32, 0.96, and 1.60 mg L-1). Calcium and B rates increased the shoot and root dry weight and fruit yield at a Ca: B ratio in the nutrient solution of 166 and 100, respectively. Symptoms of B deficiency were observed in plants supplied with 0.32 mg B L-1, regardless of the Ca concentration in the nutrient solution. Plants which showed visual symptoms of Ca deficiency cultivated with 40 mg Ca L-1 presented concentration of Ca in plant tissue up to 10 g kg(-1). The concentration and total Ca and B uptake increased with the rates of them. Notwithstanding, the shoot Ca accumulation was improved by B rates. In addition, there were no decreases in K and Mg uptake due to Ca rates. Furthermore, addition of 80 mg L-1 of Ca and 1.60 mg L-1 of B in the growth media increased the seed oil content. The Ca: B ratio in the diagnostic leaf associated with the highest plant dry weight (shoot and root) and fruit yield, was 500 (16 to 20 g kg(-1) of Ca, and for 30 to 40 mg kg(-1) of B).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The lowest singlet and triplet states of AlP3, GaP3 and BP3 molecules with C-s, C-2v and C-3v symmetries were characterized using the B3LYP functional and the aug-cc-pVTZ and aug-cc-pVQZ correlated consistent basis sets. Geometrical parameters and vibrational frequencies were calculated and compared to existent experimental and theoretical data. Relative energies were obtained with single point CCSD(T) calculations using the aug-cc-pVTZ, aug-cc-pVQZ and aug-cc-pV5Z basis sets, and then extrapolating to the complete basis set (CBS) limit. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The conjugated frustrated phosphane/borane Lewis pairs formed by 1,1-carboboration of a substituted diphenylphosphino acetylene, undergo a synergistic 1,1-addition reaction to n-butyl isocyanide with formation of new B-C and P-C bonds to the former isonitrile carbon atom. Using tert-butyl isocyanide dynamic behaviour between the isocyanide-[B] adduct and the 1,1-addition product formation was observed in solution. The different modes of isocyanide binding to the FLPs in the solid state were characterized using X-ray crystal structure analyses and comprehensive 11B and 31P solid-state magicangle- spinning (MAS-) NMR experiments. The free FLP, the Lewis adduct at the borane group, and the cyclic product resulting from isocyanide addition to both reaction centers, can be differentiated via 11B and 31P isotropic chemical shifts, 11B nuclear electric quadrupole coupling constants, isotropic indirect 11B-31P spin-spin coupling constants, and 11B...31P internuclear distances measured by rotational echo double resonance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction 1.1 Occurrence of polycyclic aromatic hydrocarbons (PAH) in the environment Worldwide industrial and agricultural developments have released a large number of natural and synthetic hazardous compounds into the environment due to careless waste disposal, illegal waste dumping and accidental spills. As a result, there are numerous sites in the world that require cleanup of soils and groundwater. Polycyclic aromatic hydrocarbons (PAHs) are one of the major groups of these contaminants (Da Silva et al., 2003). PAHs constitute a diverse class of organic compounds consisting of two or more aromatic rings with various structural configurations (Prabhu and Phale, 2003). Being a derivative of benzene, PAHs are thermodynamically stable. In addition, these chemicals tend to adhere to particle surfaces, such as soils, because of their low water solubility and strong hydrophobicity, and this results in greater persistence under natural conditions. This persistence coupled with their potential carcinogenicity makes PAHs problematic environmental contaminants (Cerniglia, 1992; Sutherland, 1992). PAHs are widely found in high concentrations at many industrial sites, particularly those associated with petroleum, gas production and wood preserving industries (Wilson and Jones, 1993). 1.2 Remediation technologies Conventional techniques used for the remediation of soil polluted with organic contaminants include excavation of the contaminated soil and disposal to a landfill or capping - containment - of the contaminated areas of a site. These methods have some drawbacks. The first method simply moves the contamination elsewhere and may create significant risks in the excavation, handling and transport of hazardous material. Additionally, it is very difficult and increasingly expensive to find new landfill sites for the final disposal of the material. The cap and containment method is only an interim solution since the contamination remains on site, requiring monitoring and maintenance of the isolation barriers long into the future, with all the associated costs and potential liability. A better approach than these traditional methods is to completely destroy the pollutants, if possible, or transform them into harmless substances. Some technologies that have been used are high-temperature incineration and various types of chemical decomposition (for example, base-catalyzed dechlorination, UV oxidation). However, these methods have significant disadvantages, principally their technological complexity, high cost , and the lack of public acceptance. Bioremediation, on the contrast, is a promising option for the complete removal and destruction of contaminants. 1.3 Bioremediation of PAH contaminated soil & groundwater Bioremediation is the use of living organisms, primarily microorganisms, to degrade or detoxify hazardous wastes into harmless substances such as carbon dioxide, water and cell biomass Most PAHs are biodegradable unter natural conditions (Da Silva et al., 2003; Meysami and Baheri, 2003) and bioremediation for cleanup of PAH wastes has been extensively studied at both laboratory and commercial levels- It has been implemented at a number of contaminated sites, including the cleanup of the Exxon Valdez oil spill in Prince William Sound, Alaska in 1989, the Mega Borg spill off the Texas coast in 1990 and the Burgan Oil Field, Kuwait in 1994 (Purwaningsih, 2002). Different strategies for PAH bioremediation, such as in situ , ex situ or on site bioremediation were developed in recent years. In situ bioremediation is a technique that is applied to soil and groundwater at the site without removing the contaminated soil or groundwater, based on the provision of optimum conditions for microbiological contaminant breakdown.. Ex situ bioremediation of PAHs, on the other hand, is a technique applied to soil and groundwater which has been removed from the site via excavation (soil) or pumping (water). Hazardous contaminants are converted in controlled bioreactors into harmless compounds in an efficient manner. 1.4 Bioavailability of PAH in the subsurface Frequently, PAH contamination in the environment is occurs as contaminants that are sorbed onto soilparticles rather than in phase (NAPL, non aqueous phase liquids). It is known that the biodegradation rate of most PAHs sorbed onto soil is far lower than rates measured in solution cultures of microorganisms with pure solid pollutants (Alexander and Scow, 1989; Hamaker, 1972). It is generally believed that only that fraction of PAHs dissolved in the solution can be metabolized by microorganisms in soil. The amount of contaminant that can be readily taken up and degraded by microorganisms is defined as bioavailability (Bosma et al., 1997; Maier, 2000). Two phenomena have been suggested to cause the low bioavailability of PAHs in soil (Danielsson, 2000). The first one is strong adsorption of the contaminants to the soil constituents which then leads to very slow release rates of contaminants to the aqueous phase. Sorption is often well correlated with soil organic matter content (Means, 1980) and significantly reduces biodegradation (Manilal and Alexander, 1991). The second phenomenon is slow mass transfer of pollutants, such as pore diffusion in the soil aggregates or diffusion in the organic matter in the soil. The complex set of these physical, chemical and biological processes is schematically illustrated in Figure 1. As shown in Figure 1, biodegradation processes are taking place in the soil solution while diffusion processes occur in the narrow pores in and between soil aggregates (Danielsson, 2000). Seemingly contradictory studies can be found in the literature that indicate the rate and final extent of metabolism may be either lower or higher for sorbed PAHs by soil than those for pure PAHs (Van Loosdrecht et al., 1990). These contrasting results demonstrate that the bioavailability of organic contaminants sorbed onto soil is far from being well understood. Besides bioavailability, there are several other factors influencing the rate and extent of biodegradation of PAHs in soil including microbial population characteristics, physical and chemical properties of PAHs and environmental factors (temperature, moisture, pH, degree of contamination). Figure 1: Schematic diagram showing possible rate-limiting processes during bioremediation of hydrophobic organic contaminants in a contaminated soil-water system (not to scale) (Danielsson, 2000). 1.5 Increasing the bioavailability of PAH in soil Attempts to improve the biodegradation of PAHs in soil by increasing their bioavailability include the use of surfactants , solvents or solubility enhancers.. However, introduction of synthetic surfactant may result in the addition of one more pollutant. (Wang and Brusseau, 1993).A study conducted by Mulder et al. showed that the introduction of hydropropyl-ß-cyclodextrin (HPCD), a well-known PAH solubility enhancer, significantly increased the solubilization of PAHs although it did not improve the biodegradation rate of PAHs (Mulder et al., 1998), indicating that further research is required in order to develop a feasible and efficient remediation method. Enhancing the extent of PAHs mass transfer from the soil phase to the liquid might prove an efficient and environmentally low-risk alternative way of addressing the problem of slow PAH biodegradation in soil.