998 resultados para Liver tumors
Resumo:
Collectively, research aimed to understand the regeneration of certain tissues has unveiled the existence of common key regulators. Knockout studies of the murine Nuclear Factor I-C (NFI-C) transcription factor revealed a misregulation of growth factor signaling, in particular that of transforming growth factor ß-1 (TGF-ßl), which led to alterations of skin wound healing and the growth of its appendages, suggesting it may be a general regulator of regenerative processes. We sought to investigate this further by determining whether NFI-C played a role in liver regeneration. Liver regeneration following two-thirds removal of the liver by partial hepatectomy (PH) is a well-established regenerative model whereby changes elicited in hepatocytes following injury lead to a rapid, phased proliferation. However, mechanisms controlling the action of liver proliferative factors such as transforming growth factor-ßl (TGF-ß1) and plasminogen activator inhibitor-1 (PAI-1) remain largely unknown. We show that the absence of NFI-C impaired hepatocyte proliferation due to an overexpression of PAI-1 and the subsequent suppression of urokinase plasminogen (uPA) activity and hepatocyte growth factor (HGF) signaling, a potent hepatocyte mitogen. This indicated that NFI-C first acts to promote hepatocyte proliferation at the onset of liver regeneration in wildtype mice. The subsequent transient down regulation of NFI-C, as can be explained by a self- regulatory feedback loop with TGF-ßl, may limit the number of hepatocytes entering the first wave of cell division and/or prevent late initiations of mitosis. Overall, we conclude that NFI-C acts as a regulator of the phased hepatocyte proliferation during liver regeneration. Taken together with NFI-C's actions in other in vivo models of (re)generation, it is plausible that NFI-C may be a general regulator of regenerative processes. - L'ensemble des recherches visant à comprendre la régénération de certains tissus a permis de mettre en évidence l'existence de régulateurs-clés communs. L'étude des souris, dépourvues du gène codant pour le facteur de transcription NFI-C (Nuclear Factor I-C), a montré des dérèglements dans la signalisation de certains facteurs croissance, en particulier du TGF-ßl (transforming growth factor-ßl), ce qui conduit à des altérations de la cicatrisation de la peau et de la croissance des poils et des dents chez ces souris, suggérant que NFI-C pourrait être un régulateur général du processus de régénération. Nous avons cherché à approfondir cette question en déterminant si NFI-C joue un rôle dans la régénération du foie. La régénération du foie, induite par une hépatectomie partielle correspondant à l'ablation des deux-tiers du foie, constitue un modèle de régénération bien établi dans lequel la lésion induite conduit à la prolifération rapide des hépatocytes de façon synchronisée. Cependant, les mécanismes contrôlant l'action de facteurs de prolifération du foie, comme le facteur de croissance TGF-ßl et l'inhibiteur de l'activateur du plasminogène PAI-1 (plasminogen activator inhibitor-1), restent encore très méconnus. Nous avons pu montrer que l'absence de NFI-C affecte la prolifération des hépatocytes, occasionnée par la surexpression de PAI-1 et par la subséquente suppression de l'activité de la protéine uPA (urokinase plasminogen) et de la signalisation du facteur de croissance des hépatocytes HGF (hepatocyte growth factor), un mitogène puissant des hépatocytes. Cela indique que NFI-C agit en premier lieu pour promouvoir la prolifération des hépatocytes au début de la régénération du foie chez les souris de type sauvage. La subséquente baisse transitoire de NFI-C, pouvant s'expliquer par une boucle rétroactive d'autorégulation avec le facteur TGF-ßl, pourrait limiter le nombre d'hépatocytes qui entrent dans la première vague de division cellulaire et/ou inhiber l'initiation de la mitose tardive. L'ensemble de ces résultats nous a permis de conclure que NFI-C agit comme un régulateur de la prolifération des hépatocytes synchrones au cours de la régénération du foie.
Resumo:
We produced three monoclonal antibodies, BF7, GE2 and CG12, against cultured human glioma cells. Their specificity was tested by an indirect antibody-binding radioimmunoassay on a panel of glial and non-glial tumor cell lines. BF7 and GE2 react preferentially with glioma cells and, except for one colon carcinoma line, they do not bind to the control non-neuroectodermal cells; they appear to be directed against common malignant glioma associated antigens. CG12, the third monoclonal antibody, binds to the great majority of tumor cell lines of neuroectodermal origin and does not bind to any other cell lines tested.
Resumo:
BACKGROUND: In the presence of pigmented iris lesions evocative of malignant melanoma and implying oncological treatment, a foregoing biopsy to exclude a benign lesion may seem a reasonable approach. After examining patient files, the utility of such a diagnostic approach was explored. MATERIAL AND METHODS: Retrospective, consecutive histopathologic case series of 10 pigmented iris tumor specimens excised since 1993. Histopathologic diagnosis was compared with final diagnosis and outcome in the patient's medical chart. RESULTS: Five biopsies had only nevus cells, whereas ulterior clinical data or histopathologic examinations were compatible with the diagnosis of malignant melanoma. One biopsy contained insufficient sample tissue. Four biopsies confirmed clinical suspicion of iris melanoma. CONCLUSION: In the current case series, 6 out of 10 biopsies provided a falsely reassuring negative or an inconclusive result. Modern management techniques such as ultrasound biomicroscopy and proton therapy of the whole anterior segment have equally diminished indications for a biopsy. In cases clinically evocative of iris melanoma, a biopsy has only a relative value.
Resumo:
Intraarterial procedures such as chemoembolization and radioembolization aim for the palliative treatment of advanced hepatocellular carcinoma (stage BCLC B and C with tumoral portal thrombosis). The combination of hepatic intraarterial chemotherapy and systemic chemotherapy can increase the probability of curing colorectal cancer with hepatic metastases not immediately accessible to surgical treatment or percutaneous ablation.
Resumo:
BACKGROUND: Engraftment of primary pancreas ductal adenocarcinomas (PDAC) in mice to generate patient-derived xenograft (PDX) models is a promising platform for biological and therapeutic studies in this disease. However, these models are still incompletely characterized. Here, we measured the impact of the murine tumor environment on the gene expression of the engrafted human tumoral cells. METHODS: We have analyzed gene expression profiles from 35 new PDX models and compared them with previously published microarray data of 18 PDX models, 53 primary tumors and 41 cell lines from PDAC. The results obtained in the PDAC system were further compared with public available microarray data from 42 PDX models, 108 primary tumors and 32 cell lines from hepatocellular carcinoma (HCC). We developed a robust analysis protocol to explore the gene expression space. In addition, we completed the analysis with a functional characterization of PDX models, including if changes were caused by murine environment or by serial passing. RESULTS: Our results showed that PDX models derived from PDAC, or HCC, were clearly different to the cell lines derived from the same cancer tissues. Indeed, PDAC- and HCC-derived cell lines are indistinguishable from each other based on their gene expression profiles. In contrast, the transcriptomes of PDAC and HCC PDX models can be separated into two different groups that share some partial similarity with their corresponding original primary tumors. Our results point to the lack of human stromal involvement in PDXs as a major factor contributing to their differences from the original primary tumors. The main functional differences between pancreatic PDX models and human PDAC are the lower expression of genes involved in pathways related to extracellular matrix and hemostasis and the up- regulation of cell cycle genes. Importantly, most of these differences are detected in the first passages after the tumor engraftment. CONCLUSIONS: Our results suggest that PDX models of PDAC and HCC retain, to some extent, a gene expression memory of the original primary tumors, while this pattern is not detected in conventional cancer cell lines. Expression changes in PDXs are mainly related to pathways reflecting the lack of human infiltrating cells and the adaptation to a new environment. We also provide evidence of the stability of gene expression patterns over subsequent passages, indicating early phases of the adaptation process.
Resumo:
Des pièges attractifs contenant du foie frais et du foie âgé de 2 et 4 jours ont été utilisés au cours de 9 journées de capture (avril à mai 1999). Parmi les 451 spécimens récoltés, 7 espèces de Calliphoridae ont été identifiées. Les conditions météorologiques, exprimées par la pluie, la température et les radiations solaires, ont une influence signficative sur l'activité des mouches. A l'exception de Lucilia sericata et L. Illustris, les autres espèces montrent une nette préférence pour les pièges contenant du foie de 4 jours. Le sex-ratio est toujours en faveur des femelles et varie de 1.7:1 (L. silvarum) à 18.8:1 (L. illustris).
Resumo:
Considerable progress was realized these last years in the understanding of the molecular mechanisms and the treatment of the GIST. Their diagnosis remains based on the morphology and immunohistochemistry. The evaluation of GIST prognosis was till know difficult to establish but a new histopronostic classification currently used allows a better therapeutic approach. The search for KIT and PDGFRA mutations is recommended to adapt a targeted therapy by KIT inhibitors. The pathologist plays a crucial role in the management of the GIST because it is on him that is based the diagnosis, the evaluation of the prognosis and the treatment (surgery and kit inhibitors).
Resumo:
It is currently unclear whether tissue changes surrounding multifocal epithelial tumors are a cause or consequence of cancer. Here, we provide evidence that loss of mesenchymal Notch/CSL signaling causes tissue alterations, including stromal atrophy and inflammation, which precede and are potent triggers for epithelial tumors. Mice carrying a mesenchymal-specific deletion of CSL/RBP-Jκ, a key Notch effector, exhibit spontaneous multifocal keratinocyte tumors that develop after dermal atrophy and inflammation. CSL-deficient dermal fibroblasts promote increased tumor cell proliferation through upregulation of c-Jun and c-Fos expression and consequently higher levels of diffusible growth factors, inflammatory cytokines, and matrix-remodeling enzymes. In human skin samples, stromal fields adjacent to multifocal premalignant actinic keratosis lesions exhibit decreased Notch/CSL signaling and associated molecular changes. Importantly, these changes in gene expression are also induced by UVA, a known environmental cause of cutaneous field cancerization and skin cancer.
Resumo:
Since the early 1980s high dose chemotherapy with autologous hematopoietic stem cell support was adopted by many oncologists as a potentially curative option for solid tumors, supported by a strong rationale from laboratory studies and apparently convincing results of early phase II studies. As a result, the number and size of randomized trials comparing this approach with conventional chemotherapy initiated (and often abandoned before completion) to prove or disprove its value was largely insufficient. In fact, with the possible exception of breast carcinoma, the benefit of a greater escalation of dose of chemotherapy with stem cell support in solid tumors is still unsettled and many oncologists believe that this approach should cease. In this article, we critically review and comment on the data from studies of high dose chemotherapy so far reported in adult patients with small cell lung cancer, ovarian cancer, germ cell tumors and sarcomas.
Resumo:
The biodistribution of simultaneous intra-arterial and intravenous injections of a radiolabelled anti-CEA MAb F(ab')2 fragment was studied in three patients with liver metastases from colorectal cancer. Identical MAb fragments, labelled with either 125I or 131I, were injected over a period of 30 min into the hepatic artery and into a peripheral vein. After 1 or 2 days, biodistribution was measured in the surgically removed metastases, normal tissue samples and blood. By tissue radioactivity counting, tumour uptake in the range 6.3-9.1% of injected dose per gram was found. Superimposable metastasis-to-blood and metastasis-to-normal liver ratios were obtained for both iodine isotopes in all three patients. The results indicate that the intra-arterial injection of MAb F(ab')2 fragments gives no measurable advantage over more convenient injections into a peripheral vein.
Resumo:
Hepatocellular carcinoma (HCC) is one of the most frequent malignant tumors worldwide and its incidence has increased over the last years in most developed countries. The majority of HCCs occur in the context of liver cirrhosis. Therefore, patients with cirrhosis and those with hepatitis B virus infection should enter a surveillance program. Detection of a focal liver lesion by ultrasound should be followed by further investigations to confirm the diagnosis and to permit staging. A number of curative and palliative treatment options are available today. The choice of treatment will depend on the tumor stage, liver function and the presence of portal hypertension as well as the general condition of the patient. A multidisciplinary approach is mandatory to offer to each patient the best treatment.
Resumo:
Fibroblastic and myofibroblastic tumors of the head and neck are numerous and may develop either in adults or in childhood. They can be benign and nonrecurring, benign but locally recurring, of low-grade of malignancy or fully malignant. The diagnosis and treatment of these lesions can be difficult. This review focuses on several (myo)fibroblastic lesions of the head and neck, including nodular fasciitis and related neoplasms, hemangiopericytoma-like tumor (glomangiopericytoma) of sinonasal passages, nasopharyngeal angiofibroma, desmoid fibromatosis, Gardner-associated fibroma, extrapleural solitary fibrous tumor, inflammatory myofibroblastic tumor, low-grade myofibroblastic sarcoma, and adult-type fibrosarcoma.
Resumo:
Stereotactic ablative radiotherapy is a modern cancer treatment strategy able to deliver highly focused radiation in one or a few fractions with a radical intent in several clinical settings. Young radiation oncologists need a constant and tailored update in this context to improve patient care in daily clinical practice. A recent meeting of AIRO Giovani (AIRO - Young Members Working Group) was specifically addressed to this topic, presenting state-of-the-art knowledge, based on the latest evidence in this field. Highlights of the congress are summarized and presented in this report, including thorough contributions of the speakers dealing with the role of stereotactic ablative radiotherapy in both oncological and non-oncological diseases, divided according to anatomical and clinical scenarios: intra-cranial settings (brain malignant primary tumors, metastases, benign tumors and functional disorders) and extra-cranial indications (lung primary tumors and metastases, thoracic re-irradiation, liver, lymph node and bone metastases, prostate cancer). With literature data discussed during the congress as a background, stereotactic ablative radiotherapy has proved to be a consolidated treatment approach in specific oncological and non-oncological scenarios, as well as a promising option in other clinical settings, requiring a further prospective validation in the near future. We herein present an updated overview of stereotactic ablative radiotherapy use in the clinic.