887 resultados para Liver Gene-expression


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the aquatic environment, fish are exposed to various stimuli at once and have developed different response mechanisms to deal with these multiple stimuli. The current study assessed the combined impacts of estrogens and bacterial infection on the physiological status of fish. Juvenile rainbow trout were exposed to two different concentrations of 17 beta-estradiol (E2) (2 or 20 mg/kg feed) and then infected with three concentrations of Yersinia ruckeri, a bacterial pathogen causing massive losses in wild and farmed salmonid populations. Organism-level endpoints to assess the impact of the single and combined treatments included hepatic vitellogenin transcript expression to evaluate the E2 exposure efficiency and survival rate of pathogen-challenged fish. The two E2 doses increased vitellogenin levels within the physiological range. Infection with Y. ruckeri caused mortality of trout, and this effect was significantly enhanced by a simultaneous exposure to high E2 dose. The hormone reduced survival at intermediate and high (10(4) and 10(6) colony forming units, cfu) bacterial concentrations, but not for a low one (10(2) cfu). Analysis of hepatic gene expression profiles by a salmonid 2 k cDNA microarray chip revealed complex regulations of pathways involved in immune responses, stress responses, and detoxicification pathways. E2 markedly reduced the expression of several genes implicated in xenobiotic metabolism. The results suggest that the interaction between pathogen and E2 interfered with the fish's capability of clearing toxic compounds. The findings of the current study add to our understanding of multiple exposure responses in fish.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Moraxella catarrhalis, a major nasopharyngeal pathogen of the human respiratory tract, is exposed to rapid downshifts of environmental temperature when humans breathe cold air. The prevalence of pharyngeal colonization and respiratory tract infections caused by M. catarrhalis is greatest in winter. We investigated how M. catarrhalis uses the physiologic exposure to cold air to regulate pivotal survival systems that may contribute to M. catarrhalis virulence. RESULTS In this study we used the RNA-seq techniques to quantitatively catalogue the transcriptome of M. catarrhalis exposed to a 26 °C cold shock or to continuous growth at 37 °C. Validation of RNA-seq data using quantitative RT-PCR analysis demonstrated the RNA-seq results to be highly reliable. We observed that a 26 °C cold shock induces the expression of genes that in other bacteria have been related to virulence a strong induction was observed for genes involved in high affinity phosphate transport and iron acquisition, indicating that M. catarrhalis makes a better use of both phosphate and iron resources after exposure to cold shock. We detected the induction of genes involved in nitrogen metabolism, as well as several outer membrane proteins, including ompA, m35-like porin and multidrug efflux pump (acrAB) indicating that M. catarrhalis remodels its membrane components in response to downshift of temperature. Furthermore, we demonstrate that a 26 °C cold shock enhances the induction of genes encoding the type IV pili that are essential for natural transformation, and increases the genetic competence of M. catarrhalis, which may facilitate the rapid spread and acquisition of novel virulence-associated genes. CONCLUSION Cold shock at a physiologically relevant temperature of 26 °C induces in M. catarrhalis a complex of adaptive mechanisms that could convey novel pathogenic functions and may contribute to enhanced colonization and virulence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Desmosomes are cell adhesion junctions required for the normal development and maintenance of mammalian tissues and organs such as the skin, skin appendages, and the heart. The goal of this study was to investigate how desmocollins (DSCs), transmembrane components of desmosomes, are regulated at the transcriptional level. We hypothesized that differential expression of the Dsc2 and Dsc3 genes is a prerequisite for normal development of skin appendages. We demonstrate that plakoglobin (Pg) in conjunction with lymphoid enhancer-binding factor 1 (Lef-1) differentially regulates the proximal promoters of these two genes. Specifically, we found that Lef-1 acts as a switch activating Dsc2 and repressing Dsc3 in the presence of Pg. Interestingly, we also determined that NF-κB pathway components, the downstream effectors of the ectodysplasin-A (EDA)/ ectodysplasin-A receptor (EDAR)/NF-κB signaling cascade, can activate Dsc2 expression. We hypothesize that Lef-1 and EDA/EDAR/NF-κB signaling contribute to a shift in Dsc isoform expression from Dsc3 to Dsc2 in placode keratinocytes. It is tempting to speculate that this shift is required for the invasive growth of placode keratinocytes into the dermis, a crucial step in skin appendage formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different life-cycle stages of Trypanosoma brucei are characterized by stage-specific glycoprotein coats. GPEET procyclin, the major surface protein of early procyclic (insect midgut) forms, is transcribed in the nucleolus by RNA polymerase I as part of a polycistronic precursor that is processed to monocistronic mRNAs. In culture, when differentiation to late procyclic forms is triggered by removal of glycerol, the precursor is still transcribed, but accumulation of GPEET mRNA is prevented by a glycerol-responsive element in the 3' UTR. A genome-wide RNAi screen for persistent expression of GPEET in glycerol-free medium identified a novel protein, NRG1 (Nucleolar Regulator of GPEET 1), as a negative regulator. NRG1 associates with GPEET mRNA and with several nucleolar proteins. These include two PUF proteins, TbPUF7 and TbPUF10, and BOP1, a protein required for rRNA processing in other organisms. RNAi against each of these components prolonged or even increased GPEET expression in the absence of glycerol as well as causing a significant reduction in 5.8S rRNA and its immediate precursor. These results indicate that components of a complex used for rRNA maturation can have an additional role in regulating mRNAs that originate in the nucleolus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synchrotron Microbeam Radiation Therapy (MRT) relies on the spatial fractionation of the synchrotron photon beam into parallel micro-beams applying several hundred of grays in their paths. Several works have reported the therapeutic interest of the radiotherapy modality at preclinical level, but biological mechanisms responsible for the described efficacy are not fully understood to date. The aim of this study was to identify the early transcriptomic responses of normal brain and glioma tissue in rats after MRT irradiation (400Gy). The transcriptomic analysis of similarly irradiated normal brain and tumor tissues was performed 6 hours after irradiation of 9 L orthotopically tumor-bearing rats. Pangenomic analysis revealed 1012 overexpressed and 497 repressed genes in the irradiated contralateral normal tissue and 344 induced and 210 repressed genes in tumor tissue. These genes were grouped in a total of 135 canonical pathways. More than half were common to both tissues with a predominance for immunity or inflammation (64 and 67% of genes for normal and tumor tissues, respectively). Several pathways involving HMGB1, toll-like receptors, C-type lectins and CD36 may serve as a link between biochemical changes triggered by irradiation and inflammation and immunological challenge. Most immune cell populations were involved: macrophages, dendritic cells, natural killer, T and B lymphocytes. Among them, our results highlighted the involvement of Th17 cell population, recently described in tumor. The immune response was regulated by a large network of mediators comprising growth factors, cytokines, lymphokines. In conclusion, early response to MRT is mainly based on inflammation and immunity which appear therefore as major contributors to MRT efficacy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the United States, endometrial cancer is the leading cancer of the female reproductive tract. There are 40,100 new cases and 7,470 deaths from endometrial cancer estimated for 2008 (47). The average five year survival rate for endometrial cancer is 84% however, this figure is substantially lower in patients diagnosed with late stage, advanced disease and much higher for patients diagnosed in early stage disease (47). Endometrial cancer (EC) has been associated with several risk factors including obesity, diabetes, hypertension, previously documented occurrence of hereditary non-polyposis colorectal cancer (HNPCC), and heightened exposure to estrogen (25). As of yet, there has not been a dependable molecular predictor of endometrial cancer occurrence in women with these predisposing factors. The goal of our lab is to identify genes that are aberrantly expressed in EC and may serve as molecular biomarkers of EC progression. One candidate protein that we are exploring as a biomarker of EC progression is the cell survival protein survivin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Environmental exposures during sensitive windows of development can reprogram normal physiological responses and alter disease susceptibility later in life in a process known as developmental reprogramming. We have shown that neonatal exposure to the xenoestrogen diethylstilbestrol (DES) can developmentally reprogram the reproductive tract in genetically susceptible Eker rats giving rise to complete penetrance of uterine leiomyoma. Based on this, we hypothesized that xenoestrogens, including genistein (GEN) and bisphenol A (BPA), reprogram estrogen-responsive gene expression in the myometrium and promote the development of uterine leiomyoma. We proposed the mechanism that is responsible for the developmental reprogramming of gene expression was through estrogen (E2)/ xenoestrogen inducedrapid ER signaling, which modifies the histone methyltransferase Enhancer of Zeste homolog 2 (EZH2) via activation of the PI3K/AKT pathway. We further hypothesized that there is a xenostrogen-specific effect on this pathway altering patterns of histone modification, DNA methylation and gene expression. In addition to our novel finding that E2/DES-induced phosphorylation of EZH2 by AKT reduces the levels of H3K27me3 in vitro and in vivo, this work demonstrates in vivo that a brief neonatal exposure to GEN, in contrast to BPA, activates the PI3K/AKT pathway to regulate EZH2 and decreases H3K27me3 levels in the neonatal uterus. Given that H3K27me3 is a repressive mark that has been shown to result in DNA methylation and gene silencing we investigated the methylation of developmentally reprogrammed genes. In support of this evidence, we show that neonatal DES exposure in comparison to VEH, leads to hypomethylation of the promoter of a developmentally reprogrammed gene, Gria2, that become hyper-responsive to estrogen in the adult myometrium indicating vi that DES exposure alter gene expression via chromatin remodeling and loss of DNA methylation. In the adult uterus, GEN and BPA exposure developmentally reprogrammed expression of estrogen-responsive genes in a manner opposite of one another, correlating with our previous data. Furthermore, the ability of GEN and BPA to developmental reprogram gene expression correlated with tumor incidence and multiplicity. These data show that xenoestrogens have unique effects on the activation of non-genomic signaling in the developing uterus that promotes epigenetic and genetic alterations, which are predictive of developmental reprogramming and correlate with their ability to modulate hormone-dependent tumor development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brain tumor is one of the most aggressive types of cancer in humans, with an estimated median survival time of 12 months and only 4% of the patients surviving more than 5 years after disease diagnosis. Until recently, brain tumor prognosis has been based only on clinical information such as tumor grade and patient age, but there are reports indicating that molecular profiling of gliomas can reveal subgroups of patients with distinct survival rates. We hypothesize that coupling molecular profiling of brain tumors with clinical information might improve predictions of patient survival time and, consequently, better guide future treatment decisions. In order to evaluate this hypothesis, the general goal of this research is to build models for survival prediction of glioma patients using DNA molecular profiles (U133 Affymetrix gene expression microarrays) along with clinical information. First, a predictive Random Forest model is built for binary outcomes (i.e. short vs. long-term survival) and a small subset of genes whose expression values can be used to predict survival time is selected. Following, a new statistical methodology is developed for predicting time-to-death outcomes using Bayesian ensemble trees. Due to a large heterogeneity observed within prognostic classes obtained by the Random Forest model, prediction can be improved by relating time-to-death with gene expression profile directly. We propose a Bayesian ensemble model for survival prediction which is appropriate for high-dimensional data such as gene expression data. Our approach is based on the ensemble "sum-of-trees" model which is flexible to incorporate additive and interaction effects between genes. We specify a fully Bayesian hierarchical approach and illustrate our methodology for the CPH, Weibull, and AFT survival models. We overcome the lack of conjugacy using a latent variable formulation to model the covariate effects which decreases computation time for model fitting. Also, our proposed models provides a model-free way to select important predictive prognostic markers based on controlling false discovery rates. We compare the performance of our methods with baseline reference survival methods and apply our methodology to an unpublished data set of brain tumor survival times and gene expression data, selecting genes potentially related to the development of the disease under study. A closing discussion compares results obtained by Random Forest and Bayesian ensemble methods under the biological/clinical perspectives and highlights the statistical advantages and disadvantages of the new methodology in the context of DNA microarray data analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vitamin A and its metabolite retinoic acid (RA) are essential elements for normal lung development and the differentiation of lung epithelial cells. We previously showed that RA rapidly activated cyclic AMP response element-binding protein (CREB) in a nonclassical manner in normal human tracheobronchial epithelial (NHTBE) cells. In the present study, we further demonstrated that this nonclassical signaling of RA on the activation of CREB plays a critical role in regulating the expression of airway epithelial cell differentiation markers, the MUC2, MUC5AC, and MUC5B genes. We found that RA rapidly activates the protein kinase Calpha isozyme and transmits the activation signal to CREB via the Raf/MEK/extracellular signal-regulated kinase/p90 ribosomal S6 kinase (RSK) pathway. Activated RSK translocated from the cytoplasm to the nucleus, where it phosphorylates CREB. Activated CREB then binds to a cis-acting replication element motif on the promoter (at nucleotides [nt] -878 to -871) of the MUC5AC gene. The depletion of CREB using small interfering RNA abolished not only the RA-induced MUC5AC but also RA-induced MUC2 and MUC5B. Taken together, our findings demonstrate that CREB activation via this nonclassical RA signaling pathway may play an important role in regulating the expression of mucin genes and mediating the early biological effects of RA during normal mucous differentiation in NHTBE cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pili in Gram-positive bacteria play a major role in the colonization of host tissue and in the development of biofilms. They are promising candidates for vaccines or drug targets since they are highly immunogenic and share common structural and functional features among various Gram-positive pathogens. Numerous publications have helped build a detailed understanding of pilus surface assembly, yet regulation of pilin gene expression has not been well defined. Utilizing a monoclonal antibody developed against the Enterococcus faecalis major pilus protein EbpC, we identified mutants from a transposon (Tn) insertion library which lack surface-exposed Ebp pili. In addition to insertions in the ebp regulon, an insertion in ef1184 (dapA) significantly reduced levels of EbpC. Analysis of in-frame dapA deletion mutants and mutants with the downstream gene rnjB deleted further demonstrated that rnjB was responsible for the deficiency of EbpC. Sequence analysis revealed that rnjB encodes a putative RNase J2. Subsequent quantitative real-time PCR (qRT-PCR) and Northern blotting demonstrated that the ebpABC mRNA transcript level was significantly decreased in the rnjB deletion mutant. In addition, using a reporter gene assay, we confirmed that rnjB affects the expression of the ebpABC operon. Functionally, the rnjB deletion mutant was attenuated in its ability to produce biofilm, similar to that of an ebpABC deletion mutant which lacks Ebp pili. Together, these results demonstrate the involvement of rnjB in E. faecalis pilin gene expression and provide insight into a novel mechanism of regulation of pilus production in Gram-positive pathogens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retinoic acid is a small lipophilic molecule that exerts profound effects on the growth and differentiation of both normal and transformed cells. It is also a natural morphogen that is critical in the development of embryonic structures. The molecular effects of retinoic acid involve alterations in the expression of several proteins and these changes are presumably mediated in part by alterations in gene expression. For instance, retinoic acid causes a rapid induction of tissue transglutaminase, an enzyme involved in protein cross-linking. The molecular mechanisms responsible for the effects of retinoic acid on gene expression have not been characterized. To approach this question, I have isolated and characterized tissue transglutaminase of cDNA clones. The deduced amino acid sequences of tissue transglutaminase and of factor XIIIa showed a relatively high degree of homology in their putative calcium binding domains.^ To explore the mechanism of induction of this enzyme, both primary (macrophages) and cultured cells (Swiss 3T3-C2 and CHO fibroblasts) were used. I found that retinoic acid is a general inducer of tissue transglutaminase mRNA in these cells. In murine peritoneal macrophages retinoic acid causes a rapid accumulation of this mRNA and this effect is independent of concurrent protein synthesis. The retinoic acid effect is not mediated by a post-transcriptional increase in the stability of the tissue transglutaminase mRNA, but appears to involve an increase in the transcription rate of the tissue transglutaminase gene. This provides the first example of regulation by retinoic acid of a specific gene, supporting the hypothesis that these molecules act by directly regulating the transcriptional activity of specific genes. A molecular model for the effects of retinoic acid on the expression of genes linked to cellular proliferation and differentiation is proposed. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retinoids are known to inhibit proliferation of and induce terminal differentiation of many normal and transformed cells. It has been postulated that retinoids exert their effect by altering gene expression. HL-60 cells and macrophages both respond to retinoic acid action by the rapid induction of the enzyme tissue transglutaminase. The induction has been shown to be due to increased transcription of the transglutaminase gene. The first part of the dissertation studied the structure-function relationship of retinoid-regulated transglutaminase induction, differentiation and proliferation in HL-60 cells using retinoid analogs. The results indicated strict structural constraints and a strong structure-function correlation between transglutaminase induction and differentiation; those retinoids that induced transglutaminase also induced differentiation, those analogs that did not induce transglutaminase could not induce differentiation. The ability of the retinoids to induce transglutaminase in HL-60 cells was paralleled in macrophages. However, the antiproliferative effect of the retinoids displayed less stringent structural constraints than their differentiation- and transglutaminase-inducing properties. Specifically all the retinoids were able to inhibit proliferation to varying extents. It is concluded that the induction of transglutaminase and of differentiation by retinoids is mediated by receptors. While receptor mediation cannot be entirely ruled out, with the current data no definitive statement can be made about the antiproliferative activity of retinoids. Also, the concordance in the ability of the retinoids to induce transglutaminase and the ability to induce differentiation of HL-60 cells suggests that the former is an early response of the cells to retinoids and differentiation a later consequence on the same pathway. Using the induction of transglutaminase as an index of the direct, or primary, effect of retinoids on gene expression, the second part of the dissertation investigates, by 2D gel electrophoresis, the alteration in the rates of synthesis of other proteins in macrophages and HL-60 cells in response to short incubations with retinoic acid. Any changes in parallel with transglutaminase were taken to indicate proteins directly under the control of retinoic acid. It is concluded that retinoic acid regulates the expression of a circumscribed set of genes in a cell-specific manner. The results support the hypothesis that retinoids exert their multiple effects on myeloid cells, in part, by receptor-mediated alternations in gene expression. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a human terato-carcinoma cell line, PA-1, the functional role of the oncogenes and tumor suppressor gene involved in the multistep process of carcinogenesis have been analyzed. The expression of AP-2 was strongly correlated with the susceptibility to ras transformation. The differential responsiveness to growth factors between stage 1 ras resistant cells and stage 2 ras susceptible cells was observed, indicating that the ability of stage 2 cells to respond to the mutated ras oncogenes in transformation correlated with the ability to be stimulated by certain growth factors. Using differential screening of cDNA libraries, a number of differentially expressed cDNA clones was isolated. One of those, clone 12, is overexpressed in ras transformed stage 3 cells. The amino acid sequence of clone 12 is almost identical to a mouse LLrep3 gene that was growth-regulated, and 78% similar to a yeast ribosomal protein S4. These results suggest that the S4 gene may be involved in regulation of growth. Clone 9 is expressed in stage 1 ras resistant cells (3.5-kb and 3.0-kb transcripts) but the expression of this clone in stage 2 ras susceptible cells and stage 3 ras-transformed cells is greatly diminished. The expression of this cDNA clone was increased to at least five fold in ras resistant cells and nontumorigenic hybrids treated with retinoic acid but not increased in retinoic acid treated ras susceptible cells, ras transformed cells and the tumorigenic segregants. Partial sequence of this clone showed no homology to the sequences in Genbank. These findings suggest that clone 9 could be a suppressor gene or the genes that are involved in the biochemical pathway of tumor suppression or neurogenic differentiation. The apparent pleiotropic effect of the loss of this suppressor gene function support Harris' proposal that tumor suppressor genes regulate differentiation. The tumor suppressor gene may act as negative regulator of tumor growth by controlling gene expression in differentiation. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Histone gene expression is replication-independent during oogenesis and early embryogenesis in amphibians; however, it becomes replication-dependent during later embryogenesis and remains replication-dependent through adulthood. In order to understand the mechanism for this switch in transcriptional regulation of histone gene expression during amphibian development, linker-scanning mutations were made in a Xenopus laevis H2B histone gene promoter by oligonucleotide site-directed mutagenesis and assayed by microinjection into oocytes and embryos. The Xenopus H2B gene has a relatively simple promoter containing several transcriptional regulatory elements, including TFIID, CCAAT, and ATF motifs, required for maximal transcription in both oocytes and embryos. Factors binding to the CCAAT and ATF motifs are present in oocytes and embryos and increase slightly in abundance during early development. A sequence (CTTTACAT) in the frog H2B promoter resembling the conserved octamer motif (ATTTGCAT), the target for cell-cycle regulation of a human H2B gene, is additionally required for maximal H2B transcription in frog embryos. Oocytes and embryos contain multiple octamer-binding proteins that are expressed in a sequential manner during early development. Sequences encoding three novel octamer-binding proteins were isolated from Xenopus cDNA libraries by virtue of their similarity with the DNA binding (POU) domain of the ubiquitously expressed transcription factor Oct-1. The protein encoded by one of these genes, termed Oct-60, was localized mainly in the cytoplasm of oocytes and was also present in early embryos until the gastrula stage of development. Proteins encoded by the other two genes, Oct-25 and Oct-91, were present in embryos after the mid-blastula stage of development and decreased by early neurula stage. The activity of the Xenopus H2B octamer motif in embryos is not specifically associated with increased binding by Oct-1 or the appearance of novel octamer-binding proteins but requires the presence of an intact CCAAT motif. We found that synergistic interactions among promoter elements are important for full H2B promoter activity. The results suggest that transcription of the Xenopus H2B gene is replication-dependent when it is activated at the mid-blastula stage of development and that replication-dependent H2B transcription is mediated by Oct-1. ^