971 resultados para Liposome Stem cells atheroma VEGF ultrasound vascular disease


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although the importance of the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome in health and disease is well appreciated, a precise characterization of NLRP3 expression is yet undetermined. To this purpose, we generated a knock-in mouse in which the Nlrp3 coding sequence was substituted for the GFP (enhanced GFP [egfp]) gene. In this way, the expression of eGFP is driven by the endogenous regulatory elements of the Nlrp3 gene. In this study, we show that eGFP expression indeed mirrors that of NLRP3. Interestingly, splenic neutrophils, macrophages, and, in particular, monocytes and conventional dendritic cells showed robust eGFP fluorescence, whereas lymphoid subsets, eosinophils, and plasmacytoid dendritic cells showed negligible eGFP levels. NLRP3 expression was highly inducible in macrophages, both by MyD88- and Trif-dependent pathways. In vivo, when mice were challenged with diverse inflammatory stimuli, differences in both the number of eGFP-expressing cells and fluorescence intensity were observed in the draining lymph node. Thus, NLRP3 levels at the site of adaptive response initiation are controlled by recruitment of NLRP3-expressing cells and by NLRP3 induction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inflammation participates in tissue repair through multiple mechanisms including directly regulating the cell fate of resident progenitor cells critical for successful regeneration. Upon surveying target cell types of the TNF ligand TWEAK, we observed that TWEAK binds to all progenitor cells of the mesenchymal lineage and induces NF-kappaB activation and the expression of pro-survival, pro-proliferative and homing receptor genes in the mesenchymal stem cells, suggesting that this pro-inflammatory cytokine may play an important role in controlling progenitor cell biology. We explored this potential using both the established C2C12 cell line and primary mouse muscle myoblasts, and demonstrated that TWEAK promoted their proliferation and inhibited their terminal differentiation. By generating mice deficient in the TWEAK receptor Fn14, we further showed that Fn14-deficient primary myoblasts displayed significantly reduced proliferative capacity and altered myotube formation. Following cardiotoxin injection, a known trigger for satellite cell-driven skeletal muscle regeneration, Fn14-deficient mice exhibited reduced inflammatory response and delayed muscle fiber regeneration compared with wild-type mice. These results indicate that the TWEAK/Fn14 pathway is a novel regulator of skeletal muscle precursor cells and illustrate an important mechanism by which inflammatory cytokines influence tissue regeneration and repair. Coupled with our recent demonstration that TWEAK potentiates liver progenitor cell proliferation, the expression of Fn14 on all mesenchymal lineage progenitor cells supports a broad involvement of this pathway in other tissue injury and disease settings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To characterize the clinical, morphological and immunohistological features of epithelial ingrowth cells after laser in situ keratomileusis (LASIK) or Automated Lamellar Therapeutic Keratoplasty (ALTK) with specific reference to current markers of corneal stem cells.Methods: Four patients were included in this interventional non-comparative case series. Full ophthalmologic examination was performed. Epithelial ingrowth specimens from 4 patients were removed surgically and immunostained for cytokeratin 3 (CK3), cytokeratin 15 (CK15), cytokeratin 19 (CK19), Muc5AC, p63α, C/EBPδ, Bmi-1, BCRP/ABCG2 and Ki-67.Results: The time interval between LASIK/ALTK and ingrowth surgical removal was, 3, 11, 15 and 36 months. On slit lamp examination, early epithelial ingrowth appeared as whitish pearls and late epithelial ingrowth as confluent whitish opacities. Microscopically, the epithelial ingrowths showed features of a squamous non keratinizing epithelium. No mitotic figure was seen. Ki-67 labelling of 3 cases showed a proliferation index of 3-4%. Superficial squamous cells strongly expressed CK3. Expression of C/EBPδ, BCRP/ABCG2 and p63α was seen in more than 70% of cells and Bmi-1 was positive in up to 30% of cells in the specimens tested. There was no expression of CK19 or CK15.Conclusions: Epithelial ingrowths can persist for up to 3 years following LASIK surgery. They show a capacity for self-renewal and corneal differentiation. Besides, they express p63α, C/EBPδ, Bmi-1, BCRP/ABCG2 which have been proposed as markers of stem cell phenotype. These observations suggest that post-LASIK/ALTK epithelial inclusions could derive from stem-like cells located in the peripheral corneal epithelium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: The vascular endothelial growth factor (VEGF) is a prominent¦contributor of tumor angiogenesis. VEGF induces endothelial cell migration,¦proliferation and survival, which are critical steps for the development of new¦blood vessels, through the activation of the Mek/Erk and PI3K/Akt signaling¦pathways. Recent findings have demonstrated that mTORC2 regulates Akt and¦Erk in endothelial cells. The role of mTORC2 in VEGF-mediated endothelial¦cell responses has however not been characterized.¦Methods: We used human umbilical vein endothelial cells (HUVEC). The¦effects of VEGF on the Mek/Erk and PI3K/Akt pathway were analyzed by¦Western blot. Inhibition of mTORC2 was achieved using small interfering¦RNAs to rictor. Cell proliferation rate was assessed by BrdU incorporation and¦immunocytofluorescence. Apoptosis rate was determined by ELISA as well as¦propidium iodine staining and FACS analysis. Migration of endothelial cells¦was evaluated using a modified Boyden chamber assay.¦Results:Wefound thatVEGF activatesmTORC2 in endothelial cells. Indeed,¦treatment of endothelial cells with VEGF increases Akt phosphorylation, a¦downstream effector of mTORC2. We have further determined the role¦of mTORC2 in VEGF signaling by knocking down rictor, a component¦of mTORC2. We observed that VEGF failed to activate Akt and Erk in¦endothelial cells transfected with rictor siRNA. To next analyze the functional¦significance of mTORC2 inhibition on VEGF-mediated endothelial cell¦responses we performed proliferation, survival and migration assays. We found¦that VEGF failed to induce endothelial cell proliferation, survival and migration¦in endothelial cell lacking mTORC2 activity.¦Conclusion: These results show that mTORC2 is an important signaling¦intermediary in VEGF-induced endothelial cell responses and thus represents¦an interesting target to block VEGF-induced angiogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Development of Peyer's patches and lymph nodes requires the interaction between CD4+ CD3- IL-7Ralpha+ lymphoid-tissue inducer (LTi) and VCAM-1+ organizer cells. Here we showed that by promoting their survival, enhanced expression of interleukin-7 (IL-7) in transgenic mice resulted in accumulation of LTi cells. With increased IL-7 availability, de novo formation of VCAM-1+ Peyer's patch anlagen occurred along the entire fetal gut resulting in a 5-fold increase in Peyer's patch numbers. IL-7 overexpression also led to formation of multiple organized ectopic lymph nodes and cecal patches. After immunization, ectopic lymph nodes developed normal T cell-dependent B cell responses and germinal centers. Mice overexpressing IL-7 but lacking either RORgamma, a factor required for LTi cell generation, or lymphotoxin alpha1beta2 had neither Peyer's patches nor ectopic lymph nodes. Therefore, by controlling LTi cell numbers, IL-7 can regulate the formation of both normal and ectopic lymphoid organs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Initiation of antiretroviral therapy during the earliest stages of HIV-1 infection may limit the seeding of a long-lasting viral reservoir, but long-term effects of early antiretroviral treatment initiation remain unknown. Here, we analyzed immunological and virological characteristics of nine patients who started antiretroviral therapy at primary HIV-1 infection and remained on suppressive treatment for >10 years; patients with similar treatment duration but initiation of suppressive therapy during chronic HIV-1 infection served as controls. We observed that independently of the timing of treatment initiation, HIV-1 DNA in CD4 T cells decayed primarily during the initial 3 to 4 years of treatment. However, in patients who started antiretroviral therapy in early infection, this decay occurred faster and was more pronounced, leading to substantially lower levels of cell-associated HIV-1 DNA after long-term treatment. Despite this smaller size, the viral CD4 T cell reservoir in persons with early treatment initiation consisted more dominantly of the long-lasting central-memory and T memory stem cells. HIV-1-specific T cell responses remained continuously detectable during antiretroviral therapy, independently of the timing of treatment initiation. Together, these data suggest that early HIV-1 treatment initiation, even when continued for >10 years, is unlikely to lead to viral eradication, but the presence of low viral reservoirs and durable HIV-1 T cell responses may make such patients good candidates for future interventional studies aiming at HIV-1 eradication and cure. IMPORTANCE: Antiretroviral therapy can effectively suppress HIV-1 replication to undetectable levels; however, HIV-1 can persist despite treatment, and viral replication rapidly rebounds when treatment is discontinued. This is mainly due to the presence of latently infected CD4 T cells, which are not susceptible to antiretroviral drugs. Starting treatment in the earliest stages of HIV-1 infection can limit the number of these latently infected cells, raising the possibility that these viral reservoirs are naturally eliminated if suppressive antiretroviral treatment is continued for extremely long periods of time. Here, we analyzed nine patients who started on antiretroviral therapy within the earliest weeks of the disease and continued treatment for more than 10 years. Our data show that early treatment accelerated the decay of infected CD4 T cells and led to very low residual levels of detectable HIV-1 after long-term therapy, levels that were otherwise detectable in patients who are able to maintain a spontaneous, drug-free control of HIV-1 replication. Thus, long-term antiretroviral treatment started during early infection cannot eliminate HIV-1, but the reduced reservoirs of HIV-1 infected cells in such patients may increase their chances to respond to clinical interventions aiming at inducing a drug-free remission of HIV-1 infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The telomere length in nucleated peripheral blood (PB) cells indirectly reflects the mitotic history of their precursors: the hematopoietic stem cells (HSCs). The average length of telomeres in PB leukocytes can be measured using fluorescence in situ hybridization and flow cytometry (flow FISH). We previously used flow FISH to characterize the age-related turnover of HSCs in healthy individuals. In this review, we describe results of recent flow FISH studies in patients with selected hematopoietic stem cell-associated disorders: chronic myelogenous leukemia (CML) and several bone marrow failure syndromes. CML is characterized by a marked expansion of myeloid Philadelphia chromosome positive (Ph+) cells. Nevertheless, nonmalignant (Ph-) HSCs typically coexist in the bone marrow of CML patients. We analyzed the telomere length in > 150 peripheral blood leukocytes (PBLs) and bone marrow samples of patients with CML as well as samples of Ph- T-lymphocytes. Compared to normal controls, the overall telomere fluorescence in PBLs of patients with CML was significantly reduced. However, no telomere shortening was observed in Ph- T-lymphocytes. Patients in late chronic phase (CP) had significantly shorter telomeres than those assessed earlier in CP. Our data suggest that progressive telomere shortening is correlated with disease progression in CML. Within the group of patients with bone marrow failure syndromes, we only found significantly shortened telomeres (compared to age-adjusted controls) in granulocytes from patients with aplastic anemia (AA). Strikingly, the telomere length in granulocytes from AA patients who had recovered after immunosuppressive therapy (recAA) did not differ significantly from controls, whereas untreated patients and nonresponders with persistent severe pancytopenia (sAANR) showed marked and significant telomere shortening compared to healthy donors and patients with recAA. Furthermore, an inverse correlation between age-adjusted telomere length and peripheral blood counts was found in support of a model in which the degree of cytopenia and the amount of telomere shortening are correlated. These results support the concept of extensive proliferation of HSCs in subgroups of AA patients and suggest a potential use of telomere-length measurements as a prognostic tool in this group of disorders as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most hematopoietic stem cells (HSC) in the bone marrow reside in a quiescent state and occasionally enter the cell cycle upon cytokine-induced activation. Although the mechanisms regulating HSC quiescence and activation remain poorly defined, recent studies have revealed a role of lipid raft clustering (LRC) in HSC activation. Here, we tested the hypothesis that changes in lipid raft distribution could serve as an indicator of the quiescent and activated state of HSCs in response to putative niche signals. A semi-automated image analysis tool was developed to map the presence or absence of lipid raft clusters in live HSCs cultured for just one hour in serum-free medium supplemented with stem cell factor (SCF). By screening the ability of 19 protein candidates to alter lipid raft dynamics, we identified six factors that induced either a marked decrease (Wnt5a, Wnt3a and Osteopontin) or increase (IL3, IL6 and VEGF) in LRC. Cell cycle kinetics of single HSCs exposed to these factors revealed a correlation of LRC dynamics and proliferation kinetics: factors that decreased LRC slowed down cell cycle kinetics, while factors that increased LRC led to faster and more synchronous cycling. The possibility of identifying, by LRC analysis at very early time points, whether a stem cell is activated and possibly committed upon exposure to a signaling cue of interest could open up new avenues for large-scale screening efforts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tissue engineering is a popular topic in peripheral nerve repair. Combining a nerve conduit with supporting adipose-derived cells could offer an opportunity to prevent time-consuming Schwann cell culture or the use of an autograft with its donor site morbidity and eventually improve clinical outcome. The aim of this study was to provide a broad overview over promising transplantable cells under equal experimental conditions over a long-term period. A 10-mm gap in the sciatic nerve of female Sprague-Dawley rats (7 groups of 7 animals, 8 weeks old) was bridged through a biodegradable fibrin conduit filled with rat adipose-derived stem cells (rASCs), differentiated rASCs (drASCs), human (h)ASCs from the superficial and deep abdominal layer, human stromal vascular fraction (SVF), or rat Schwann cells, respectively. As a control, we resutured a nerve segment as an autograft. Long-term evaluation was carried out after 12 weeks comprising walking track, morphometric, and MRI analyses. The sciatic functional index was calculated. Cross sections of the nerve, proximal, distal, and in between the two sutures, were analyzed for re-/myelination and axon count. Gastrocnemius muscle weights were compared. MRI proved biodegradation of the conduit. Differentiated rat ASCs performed significantly better than undifferentiated rASCs with less muscle atrophy and superior functional results. Superficial hASCs supported regeneration better than deep hASCs, in line with published in vitro data. The best regeneration potential was achieved by the drASC group when compared with other adipose tissue-derived cells. Considering the ease of procedure from harvesting to transplanting, we conclude that comparison of promising cells for nerve regeneration revealed that particularly differentiated ASCs could be a clinically translatable route toward new methods to enhance peripheral nerve repair.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. Multiple myeloma (MM) is the second most common hematologic malignancy after lymphomas In Finland: the annual incidence of MM is approximately 200. For three decades the median survival remained at 3 to 4 years from diagnosis until high-dose melphalan treatment supported by autologous stem cell transplantation (ASCT) became the standard of care for newly diagnosed MM since the mid 1990’s and the median survival increased to 5 – 6 years. This study focuses on three important aspects of ASCT, namely 1) stem cell mobilization, 2) single vs. double ASCT as initial treatment, and 3) the role of minimal residual disease (MRD) for longterm outcome. Aim. The aim of this series of studies was to evaluate the outcomes of MM patients and the ASCT procedure at the Turku University Central Hospital, Finland. First, we tried to identify which factors predict unsuccessful mobilization of autologous stem cells. Second, we compared the use of short-acting granulocyte-colony stimulating factor (GCSF) with long-acting G-CSF as mobilization agents. Third, one and two successive ASCTs were compared in 100 patients with MM. Fourth, for patients in complete response (CR) after stem cell transplantation (SCT), patient-specific probes for quantitative allele-specific oligonucleotide polymerase-chain reaction (qASO-PCR) measurements were designed to evaluate MRD and its importance for long-term outcome. Results. The quantity of previous chemotherapy and previous interferon use were significant pre-mobilization factors that predicted mobilization failure, together with some factors related to mobilization therapy itself, such as duration and degree of cytopenias and occurrence of sepsis. Short-acting and long-acting G-CSF combined with chemotherapy were comparable as stem cells mobilizers. The progression free (PFS) and overall survival (OS) tended to be longer after double ASCT than after single ASCT with a median follow-up time of 4 years, but this difference disappeared as the follow-up time increased. qASO-PCR was a good and sensitive divider of the CR patients into two prognostic groups: MRD low/negative (≤ 0.01%) and MRD high (>0.01%) groups with a significant difference in PFS and suggestively also in OS. Conclusions. When the factors prediciting a poor outcome of stem cell mobilization prevail, it is possible to identify those patients who need specific efforts to maximize the mobilization efficacy. Long-acting pegfilgrastim is a practical and effective alternative to short-acting filgrastim for mobilization therapy. There is no need to perform double ASCT on all eligible patients. MRD assessment with qASO-PCR is a sensitive method for evaluation of the depth of the CR response and can be used to predict long-term outcome after ACST.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evidence is accumulating that Th1 cells play an important role in the development of multiple sclerosis (MS) and experimental allergic encephalomyelitis (EAE), whereas Th2 cells contribute to recovery from disease. A major determinant in the development of Th1 and Th2 cells is the type of antigen-presenting cell (APC) involved and its functional characteristics, e.g., the production of interleukin-12. Therefore, modulation of APC might interfere with the development of Th1 type responses and as such be beneficial for MS and EAE. The potential of cytokines, in particular interleukin-10, and glucocorticoids to exert a selective effect on APC, and as a consequence to affect the Th1-Th2 balance in EAE, is discussed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hypertension is one of the major precursors of atherosclerotic vascular disease, and vascular smooth muscle abnormal cell replication is a key feature of plaque formation. The present study was conducted to examine the relationship between hypertension and smooth muscle cell proliferation after balloon injury and to correlate neointima formation with resting membrane potential of uninjured smooth muscle cells, since it has been suggested that altered vascular function in hypertension may be related to the resetting of the resting membrane potential in spontaneously hypertensive rats (SHR). Neointima formation was induced by balloon injury to the carotid arteries of SHR and renovascular hypertensive rats (1K-1C), as well as in their normotensive controls, i.e., Wistar Kyoto (WKY) and normal Wistar (NWR) rats. After 14 days the animals were killed and the carotid arteries were submitted to histomorphometric and immunohistochemical analyses. Resting membrane potential measurements showed that uninjured carotid arteries from SHR smooth muscle cells were significantly depolarized (-46.5 ± 1.9 mV) compared to NWR (-69 ± 1.4 mV), NWR 1K-1C (-60.8 ± 1.6 mV), WKY (-67.1 ± 3.2 mV) and WKY 1K-1C (-56.9 ± 1.2 mV). The SHR arteries responded to balloon injury with an enhanced neointima formation (neo/media = 3.97 ± 0.86) when compared to arteries of all the other groups (NWR 0.93 ± 0.65, NWR 1K-1C 1.24 ± 0.45, WKY 1.22 ± 0.32, WKY 1K-1C 1.15 ± 0.74). Our results indicate that the increased fibroproliferative response observed in SHR is not related to the hypertensive state but could be associated with the resetting of the carotid smooth muscle cell resting membrane potential to a more depolarized state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone marrow stromal cells are critical regulators of hematopoiesis. Osteoblasts are part of the stromal cell support system in bone marrow and may be derived from a common precursor. Several studies suggested that osteoblasts regulate hematopoiesis, yet the entire mechanism is not understood. It is clear, however, that both hematopoietic precursors and osteoblasts interact for the production of osteoclasts and the activation of resorption. We observed that hematopoietic stem cells (HSCs) regulate osteoblastic secretion of various growth factors, and that osteoblasts express some soluble factors exclusively in the presence of HSCs. Osteoblasts and hematopoietic cells are closely associated with each other in the bone marrow, suggesting a reciprocal relationship between them to develop the HSC niche. One critical component regulating the niche is stromal-derived factor-1 (SDF-1) and its receptor CXCR4 which regulates stem cell homing and, as we have recently demonstrated, plays a crucial role in facilitating those tumors which metastasize to bone. Osteoblasts produce abundant amounts of SDF-1 and therefore osteoblasts play an important role in metastasis. These findings are discussed in the context of the role of osteoblasts in marrow function in health and disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Osteoporosis and atherosclerosis are chronic degenerative diseases which have been considered to be independent and whose common characteristic is increasing incidence with age. At present, growing evidence indicates the existence of a correlation between cardiovascular disease and osteoporosis, irrespective of age. The morbidity and mortality of osteoporosis is mainly related to the occurrence of fractures. Atherosclerosis shows a high rate of morbidity and especially mortality because of its clinical repercussions such as angina pectoris, acute myocardial infarction, stroke, and peripheral vascular insufficiency. Atherosclerotic disease is characterized by the accumulation of lipid material in the arterial wall resulting from autoimmune and inflammatory mechanisms. More than 90% of these fatty plaques undergo calcification. The correlation between osteoporosis and atherosclerosis is being established by studies of the underlying physiopathological mechanisms, which seem to coincide in many biochemical pathways, and of the risk factors for vascular disease, which have also been associated with a higher incidence of low-bone mineral density. In addition, there is evidence indicating an action of antiresorptive drugs on the reduction of cardiovascular risks and the effect of statins, antihypertensives and insulin on bone mass increase. The mechanism of arterial calcification resembles the process of osteogenesis, involving various cells, proteins and cytokines that lead to tissue mineralization. The authors review the factors responsible for atherosclerotic disease that correlate with low-bone mineral density.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transforming growth factor-β1 (TGF-β1) plays an important role in the fibrogenic process in the liver. The aim of the present study was to explore the action of TGF-β1 on fibronectin expression in rat hepatic stem-like cells and the underlying mechanisms. The level of fibronectin expression was determined in hepatic stem-like cells (WB cells) before and after TGF-β1 stimulation by RT-PCR and Western blot methods. Using immunogold transmission electron microscopy and the Western blot method, we observed the result of the expression and the distribution of cAMP, phosphorylated Smad3 and Smad7 before and after TGF-β1 treatment. The levels of fibronectin expression in both mRNA and protein increased 4- to 5-fold after TGF-β1 stimulation, reaching an optimum level after 8 h and then gradually falling back. Similarly, TGF-β1 stimulation resulted in an increase of cAMP in WB cells, peaking at 8 h. After treatment with TGF-β1 for 24 h, the expression of cAMP gradually decreased. In addition, we found that TGF-β1 treatment also contributed to the increased expression and to changes in cellular distribution of phosphorylated Smad3 (translocation from the cytoplasm to the nucleus) and Smad7 (translocation from the nucleus to the cytoplasm) in WB cells. The present study demonstrates that TGF-β is involved in the fibrogenic process in hepatic stem cells through up-regulation of fibronectin expression, and the mechanisms underlying this process may be associated with the activation of cAMP and Smad pathways.