963 resultados para Lipid Profile
Resumo:
Objective: To determine the impact of menopause on lipid transfer from donor lipoproteins to high-density lipoproteins (HDLs)-a process that is related to the protective function of HDL-and the size of HDL particles. Method: Plasma from 22 prernenopausal and 18 postmenopausal nonobese, normolipidemic women paired for age (40-50 years) was incubated in an artificial nanoemulsion labeled with radioactive lipids. Then the HDL fraction was assessed for radioactivity; the percentage of radioactive lipids transferred from the nanoemulsion to HDL was determined; and the size of HDL particles was measured by laser light scattering. Results: There were no differences between the 2 groups in serum concentration of HDL cholesterol (61 12 mg/dL vs 61 +/- 14 mg/dL) or apolipoprotein A(1) (1.5 +/- 0.3 g/L vs 1.5 +/- 0.2 g/L); lipid transfer to HDL; or size of HDL particles (8.8 +/- 0.8 vs 9.0 +/- 0.5 nm). Conclusion: Menopause was not found to affect HDL cholesterol plasma concentration, lipid transfer to HDL, or size of HDL particles in normolipidemic nonobese women. (C) 2008 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd.All rights reserved.
Resumo:
To investigate the luteal phase endometrial expression of leukemia inhibitor factor (LIF), insulin-like growth factor 1 (IGF-1), progesterone receptor (PR), claudin 4 (CLDN4), vascular-endothelial growth factor receptor 3 (VEGFR-3), bone morphogenetic protein 4 (BMP-4) and citokeratin 7 (CK-7), we obtained luteal phase endometrial samples from 52 women. Samples were dated and integrated using a tissue microarray (TMA). Samples were immunostained for LIF, IGF-1, PR, CLDN4, VEGFR-3, BMP-4 and CK-7. Frequencies of positive expressions at the early, mid and late luteal phases were compared by two proportions test. Concomitant expression of these proteins was assessed with Chi-square or Fischer`s test. The frequency of LIF was positively correlated to the frequency of IGF-1 (r = 0.99; p < 0.05) and PR (r = 0.99; p < 0.05), and the correlation between IGF-1 and PR tended to be significant (r = 0.98; p < 0.1). The expression of PR was associated with the absence of CLDN4 (p < 0.001). Thus, expression of LIF, IGF-1 and PR are correlated during the luteal phase, and immunohistochemistry for these proteins might be used to assist in the assessment of endometrial maturation. In addition, the expression of CLDN4 and PR was not concomitant, warranting further investigation on the relationship of their endometrial expression.
Resumo:
The authors study the profile of published papers on orthopedics in general journals, not specific to orthopedics, registered in PUBMED, in a period of two years. There were selected 67 papers with heterogeneous distribution among the magazines studied. It was found the presence of 26.47% of articles with interventional design and 38% with observational one. The data are discussed
Resumo:
Immunoglobulin A deficiency (IgAD) is considered the most common form of primary immunodeficiency. The majority of IgA-deficient individuals are considered asymptomatic, even though IgAD has been associated with an increased frequency of recurrent infections, allergy, and autoimmune diseases. In this study we evaluate the Natural autoantibodies (NatAbs) reactivity to phosphorylcholine (PC) and to some pro-inflammatory molecules in IgAD with or without autoimmune disorders. We observed that in the absence of IgA there is an enhancement of IgG subclasses functioning as NatAbs against PC. Immunoglobulin G (IgG) against lipopolysaccharide, C-reactive protein, and IgA was found in IgAD, regardless of the autoimmune manifestations. Nonetheless, IgAD patients with autoimmune disease showed significantly higher IgG reactivity against pro-inflammatory molecules, such as cardiolipin, oxidized low-density lipoproteins, and phosphatidylserine, with positive correlation between them. In conclusion, the IgG NatAbs against PC may represent a compensatory defense mechanism against infections and control excess of inflammation, explaining the asymptomatic status in the IgA deficiency.
Resumo:
Rheumatoid arthritis (RA) is an autoimmune disorder characterized by chronic joint inflammation and continuous immune cell infiltration in the synovium. These changes are linked to inflammatory cytokine release, leading to eventual destruction of cartilage and bone. During the last decade new therapeutic modalities have improved the prognosis, with the introduction of novel biological response modifiers including anti-TNF alpha CTLA4Ig and, more recently, anti-IL6. In the present study we looked at the immunological effects of these three forms of therapy. Serum, obtained from patients with RA was analyzed for TNF alpha, IL6, IL10, IFN gamma, and VEGF, and in parallel, circulating plasmacytoid and myeloid dendritic cells (DC) were enumerated before and after three infusions of the respective biological treatments. After treatment with anti-IL6, we found a significant reduction of IL6 and TNF alpha levels and the percentage of both DC subsets decreased. Although the results did not reach statistical significance for anti-TNF alpha treatment, similar trends were observed. Meanwhile, CTLA4Ig therapy led to the reduction IFN gamma levels only. None of the treatments modified significantly VEGF or IL10 levels. These findings may explain why patients with RA improve more rapidly on IL-6 therapy than with the other two modalities.
Resumo:
Objective: To compare the variability of patterns of depressive symptoms between two consecutive depressive episodes in patients with bipolar disorder type I. Methods: Review of prospectively collected data from 136 subjects of an out-patient bipolar unit from 1997 to 2007. Binomial statistics was used for the analysis of Hamilton Depression Rating Scale (HDRS)-31 items of the first and second episodes, and the correlation of the HDRS-31 item scores of both episodes was determined using the Spearman coefficient. Results: Ten depressive symptoms showed a significant correlation between index and subsequent episodes: psychological anxiety, somatic anxiety, somatic symptoms, diurnal variation, paranoid symptoms, obsessive and compulsive symptoms, hypersomnia, loss of appetite and helplessness. Only four symptoms were stable in both statistical tests: paranoid symptoms, obsessive-compulsive symptoms, loss of appetite and hypersomnia. Conclusions: Paranoid and obsessive-compulsive symptoms, loss of appetite and hypersomnia tended to be found in successive episodes. However, the moderate correlations of the symptoms across two depressive recurrences suggested that clinical presentations in bipolar depression may not be predicted by symptom profiles presented in previous episodes.
Resumo:
Introduction: Body mass index (BMI) increase is an undesired effect associated with antipsychotics, and crucial for patients` global health and treatment compliance. We aimed to investigate the relation between BMI during olanzapine or halopericlol treatments and leptin, neuropeptide Y (NPY), adiponectin and lipid serum levels. Methods: In this 9-month, randomized and naturalist study, 34 male patients, 18 on olanzapine and 16 on haloperidol group were enrolled, all were under monotherapy. Patient outcome was evaluated with positive and negative syndrome scale (PANSS) at every 3-month period. In each visit, BMI, leptin, NPY, lipid, olanzapine or haloperidol levels were also monitored. Results and Discussion: Leptin levels positively correlated with BMI in olanzapine (r = 0.64, p < 0.001) and haloperidol (r = 0.73, p < 0.001) groups; only in olanzapine patients, the former also correlated with PANSS score (r = 0.54, p < 0.05). NPY levels negatively correlated with olanzapine levels (r = -0.65, p < 0.01). Adiponectin levels had not significantly varied. Conclusion: Antipsychotics probably interfere on leptin and NPY signalling ways and disturb these hormones in eating behaviour control.
Resumo:
Objective: We correlated dietary profile and markers of visceral and somatic obesities in nonalcoholic fatty liver disease. Methods: Patients with histologically proven fatty infiltration of the liver (n = 25, 52 +/- 11 y of age, 64% women) underwent abdominal computed tomography, bioelectrical impedance, and anthropometric measurements. Insulin resistance was evaluated (homeostasis model assessment) and dietary intake of macronutrients was estimated by 24-h recall. Main outcome measurements were correlation of carbohydrate and fat ingestion with liver histology. Results: Metabolic syndrome was present in 72% of the population, and increased waist circumference and low high-density lipoprotein cholesterol occurred in 66%. Total body fat (bioimpedance) and dietary intake of lipids were higher in patients with non-alcoholic steatohepatitis (P < 0.05), but not in diabetic subjects who exhibited more steatosis than non-alcoholic steatohepatitis. Waist circumference exhibited a good correlation with homeostasis model assessment, total energy intake, and ingestion of specific fatty acids. Body mass index correlated well with somatic and visceral adiposities. Conclusion: Energy intake and visceral adiposity were predisposing factors for fatty liver disease. Lipid input correlated with non-alcoholic steatohepatitis in the entire group and after stratification for diabetes. These findings suggest that lipid intake may play a greater role in non-alcoholic steatohepatitis than hitherto suspected. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Objective: Only few large families with multiple endocrine neoplasia type 1 (MEN1) have been documented. Here, we aimed to investigate the clinical features of a seven-generation Brazilian pedigree. which included 715 at-risk family members. Design: Genealogical and geographic analysis was used to identify the MEN1 pedigree. Clinical and genetic approach was applied to characterize the phenotypic and genotypic features of the family members. Results: Our genetic data indicated that a founding mutation in the MEN1 gene has occurred in this extended Brazilian family. Fifty family members were diagnosed with MEN1. Very high frequencies of functioning and non-functioning MEN1-related tumors were documented and the prevalence of prolactinoma (29.6%) was similar to that previously described in prolactinoma-variant Burin (32%). In addition, bone mineral density analysis revealed severe osteoporosis (T,-2.87 +/- 0.32) of compact bone (distal radius) in hyperparathyroidism (HPT)/MEN1 patients. while marked bone mineral loss in the lumbar spine (T,-1.95 +/- 0.39). with most cancellous bone, and femoral neck (mixed composition: T,-1.48 +/- 0.27) were also present. Conclusions: In this study, we described clinically and genetically the fifth largest MEN1 family in the literature. Our data confirm previous findings suggesting that prevalence of MEN1-related tumors in large families may differ from reports combining cumulative data of small families. Furthermore. we were able to evaluate the bone status in HPT/MEN1 cases, a subject that has been incompletely approached in the literature. We discussed the bone loss pattern found in our MEN1 patients comparing with that of patients with sporadic primary HPT.
Resumo:
Several epidemiological studies have linked particulate matter exposure to numerous adverse health effects on the respiratory, cardiovascular, and reproductive systems (Braga et al., 1999; Zanobetti et al., 2000; Anderson et al., 2001; Farhat et al., 2005). More recently, ambient levels of black carbon were associated to impaired cognitive function in children (Suglia et al., 2008), suggesting that the central nervous system (CNS) may be a target of air pollutants. The present study was conducted to (a) determine whether chronic residual oil fly ash (ROFA) exposure promotes behavioral changes and lipid peroxidation in rat brain areas, and (b) determine whether N-acetylcysteine (NAC), a general antioxidant, prevents these effects. Forty-five-day-old male Wistar rats were exposed or not to ROFA by intranasal instillation and were treated or not with NAC (150 mg/kg) ip for 30 days. One day later, rats were submitted to the open field test to evaluate the motor/exploratory activities and emotionality followed by decapitation. Striatum and cerebellum were dissected to determine lipid peroxidation by the accumulation of thiobarbituric acid-reactive substances (TBARS). ROFA instillation induced an increase in lipid peroxidation level in striatum (p = .033) and cerebellum (p = .030), as compared with the control group. NAC treatment blocked these changes. ROFA promoted a decrease in the frequency of peripheral walking (p = .006) and a decrease in exploration (p = .001), which were not blocked by N-acetylcysteine. The present study provides evidence that toxic particles, administered by the respiratory route, induce oxidative stress in structures of the central nervous system, as well as behavioral alterations. The administration of NAC reduces lipid peroxidation at the striatum and cerebellum levels, but does not influence behavioral disturbances.
Resumo:
Objective: To investigate the effects of the rate of airway pressure increase and duration of recruitment maneuvers on lung function and activation of inflammation, fibrogenesis, and apoptosis in experimental acute lung injury. Design: Prospective, randomized, controlled experimental study. Setting: University research laboratory. Subjects: Thirty-five Wistar rats submitted to acute lung injury induced by cecal ligation and puncture. Interventions: After 48 hrs, animals were randomly distributed into five groups (seven animals each): 1) nonrecruited (NR); 2) recruitment maneuvers (RMs) with continuous positive airway pressure (CPAP) for 15 secs (CPAP15); 3) RMs with CPAP for 30 secs (CPAP30); 4) RMs with stepwise increase in airway pressure (STEP) to targeted maximum within 15 secs (STEP15); and 5) RMs with STEP within 30 secs (STEP30). To perform STEP RMs, the ventilator was switched to a CPAP mode and positive end-expiratory pressure level was increased stepwise. At each step, airway pressure was held constant. RMs were targeted to 30 cm H(2)O. Animals were then ventilated for 1 hr with tidal volume of 6 mL/kg and positive end-expiratory pressure of 5 cm H(2)O. Measurements and Main Results: Blood gases, lung mechanics, histology (light and electronic microscopy), interleukin-6, caspase 3, and type 3 procollagen mRNA expressions in lung tissue. All RMs improved oxygenation and lung static elastance and reduced alveolar collapse compared to NR. STEP30 resulted in optimal performance, with: 1) improved lung static elastance vs. NR, CPAP15, and STEP15; 2) reduced alveolar-capillary membrane detachment and type 2 epithelial and endothelial cell injury scores vs. CPAP15 (p < .05); and 3) reduced gene expression of interleukin-6, type 3 procollagen, and caspase 3 in lung tissue vs. other RMs. Conclusions: Longer-duration RMs with slower airway pressure increase efficiently improved lung function, while minimizing the biological impact on lungs. (Crit Care Med 2011; 39:1074-1081)
Resumo:
Epidemiological studies have demonstrated the adverse effects of particulate matter (PM) inhalation on the respiratory and cardiovascular systems. It has been reported that air pollution may affect the central nervous system and decrease cognitive function. In rats, residual oil fly ash (ROFA) instillation causes decreased motor activity and increased lipid peroxidation in the striatum and the cerebellum. Our objective was to determine whether chronic instillation of particles induces changes in learning and memory in rats and whether oxidants in the hippocampus may contribute to these adverse effects. Forty-five-day-old male Wistar rats were exposed to ROFA by intranasal instillation and were treated with N-acetylcysteine (NAC) at 150 mg/kg i.p. for 30 days. Control groups were exposed to ROFA, NAC, or neither. On days 1, 8, and 30 of the protocol, rats were submitted to the open field test to evaluate habituation. After the last open field session, the rats were killed by decapitation. The hippocampus was used to determine lipid peroxidation (LP) by the thiobarbituric acid-reactive substances test. ROFA instillation induced an increase in LP in the hippocampus compared to all treatment groups (p = .012). NAC treatment blocked these changes. All of the treatment groups presented a decrease in the frequency of peripheral walking (p = .001), rearing (p = .001), and exploration (p = .001) over time. Our study demonstrates that exposure to particles for 30 days and/or NAC treatment do not modify habituation to an open field, a simple form of learning and memory in rats, and that oxidative damage induced by ROFA does not modulate these processes.
Resumo:
Exposure to air pollution can elicit cardiovascular health effects. Children and unborn fetuses appear to be particularly vulnerable. However, the mechanisms involved in cardiovascular damage are poorly understood. It has been suggested that the oxidative stress generated by air pollution exposure triggers tissue injury. To investigate whether prenatal exposure can enhance oxidative stress in myocardium of adult animals, mice were placed in a clean chamber (CC, filtered urban air) and in a polluted chamber (PC, Sao Paulo city) during the gestational period and/or for 3 mo after birth, according to 4 protocols: control group-prenatal and postnatal life in CC; prenatal group-prenatal in PC and postnatal life in CC; postnatal group-prenatal in CC and postnatal life in PC; and pre-post group-prenatal and postnatal life in PC. As an indicator of oxidative stress, levels of lipid peroxidation in hearts were measured by malondialdehyde (MDA) quantification and by quantification of the myocardial immunoreactivity for 15-F2t-isoprostane. Ultrastructural studies were performed to detect cellular alterations related to oxidative stress. Concentration of MDA was significantly increased in postnatal (2.45 +/- 0.84 nmol/mg) and pre-post groups (3.84 +/- 1.39 nmol/mg) compared to the control group (0.31 +/- 0.10 nmol/mg) (p < .01). MDA values in the pre-post group were significantly increased compared to the prenatal group (0.71 +/- 0.15 nmol/mg) (p = .017). Myocardial isoprostane area fraction in the pre-post group was increased compared to other groups (p <= .01). Results show that ambient levels of air pollution elicit cardiac oxidative stress in adult mice, and that gestational exposure may enhance this effect.
Resumo:
Cells produce and use peptides in distinctive ways. In the present report, using isotope labeling plus semi-quantitative mass spectrometry, we evaluated the intracellular peptide profile of TAP1/beta 2m(-/-) (transporter associated with antigen-processing 1/beta 2 microglobulin) double-knockout mice and compared it with that of C57BL/6 wild-type animals. Overall, 92 distinctive peptides were identified, and most were shown to have a similar concentration in both mouse strains. However, some peptides showed a modest increase or decrease (similar to 2-fold), whereas a glycine-rich peptide derived from the C-terminal of neurogranin (KGPGPGGPGGAGGARGGAGGGPSGD) showed a substantial increase (6-fold) in TAP1/beta 2m(-/-) mice. Thus, TAP1 and beta 2microglobulin have a small influence on the peptide profile of neuronal tissue, suggesting that the presence of peptides derived from intracellular proteins in neuronal tissue is not associated with antigens of the class I major histocompatibility complex. Therefore, it is possible that these intracellular peptides play a physiological role.
Resumo:
Obstructive sleep apnea (OSA) is recurrent obstruction of the upper airway leading to sleep fragmentation and intermittent hypoxia (IH) during sleep. There is growing evidence from animal models of OSA that IH is independently associated with metabolic dysfunction, including dyslipidemia and insulin resistance. The precise mechanisms by which IH induces metabolic disturbances are not fully understood. Over the last decade, several groups of investigators developed a rodent model of IH, which emulates the oxyhemoglobin profile in human USA. In the mouse model, IH induces dyslipidemia, insulin resistance and pancreatic endocrine dysfunction, similar to those observed in human USA. Recent reports provided new insights in possible mechanisms by which IH affects lipid and glucose metabolism. IH may induce dyslipidemia by up-regulating lipid biosynthesis in the liver, increasing adipose tissue lipolysis with subsequent free fatty acid flux to the liver, and inhibiting lipoprotein clearance. IH may affect glucose metabolism by inducing sympathetic activation, increasing systemic inflammation, increasing counter-regulatory hormones and fatty acids, and causing direct pancreatic beta-cell injury. IH models of USA have improved our understanding of the metabolic impact of USA, but further studies are needed before we can translate recent basic research findings to clinical practice. (C) 2010 Elsevier Ltd. All rights reserved.