929 resultados para Library and Information Sciences


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A two day workshop was convened on February 2-3, 1998 in Charleston, SC with 20 invited experts in various areas of sea turtle research. The goal of this workshop was to review current information on sea turtles with repect to health and identify data gaps. The use of a suite of health assessment indicators will provide insight on the health status of sea turtle populations. Since the relationship of health factors of sea turtles is limited, a seconde workshop was planned. Using a tiered approach, the first workshop we identified and reviewed the available, pertinent baseline information and data gaps. The second workshop will focus on developing the framework for the research plan. The workshops will address the use of integrated set of health parameters; specific objectives are: 1) Identify reliable indicators of health in sea turtles: assess advantages and disadvantages; determine new indicators/biomarkers which may be useful; 2) Review existing sea turtle field sampling projects; 3) Identify field projects suitable for inclusion for health assessment sampling; 4) Identify data gaps, particularly environmental characterization; 5) Identify new health assessment sampling sites, including reference site(s); and 6) Develop integrated five-year research plan, with focus on health assessment of environmental characterization. (PDF contains 174 pages)

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN]The generation of spikes by neurons is energetically a costly process and the evaluation of the metabolic energy required to maintain the signaling activity of neurons a challenge of practical interest. Neuron models are frequently used to represent the dynamics of real neurons but hardly ever to evaluate the electrochemical energy required to maintain that dynamics. This paper discusses the interpretation of a Hodgkin-Huxley circuit as an energy model for real biological neurons and uses it to evaluate the consumption of metabolic energy in the transmission of information between neurons coupled by electrical synapses, i.e., gap junctions. We show that for a single postsynaptic neuron maximum energy efficiency, measured in bits of mutual information per molecule of adenosine triphosphate (ATP) consumed, requires maximum energy consumption. For groups of parallel postsynaptic neurons we determine values of the synaptic conductance at which the energy efficiency of the transmission presents clear maxima at relatively very low values of metabolic energy consumption. Contrary to what could be expected, the best performance occurs at a low energy cost.