899 resultados para Latent semantic indexing
Resumo:
An interactive hierarchical Generative Topographic Mapping (HGTM) ¸iteHGTM has been developed to visualise complex data sets. In this paper, we build a more general visualisation system by extending the HGTM visualisation system in 3 directions: bf (1) We generalize HGTM to noise models from the exponential family of distributions. The basic building block is the Latent Trait Model (LTM) developed in ¸iteKabanpami. bf (2) We give the user a choice of initializing the child plots of the current plot in either em interactive, or em automatic mode. In the interactive mode the user interactively selects ``regions of interest'' as in ¸iteHGTM, whereas in the automatic mode an unsupervised minimum message length (MML)-driven construction of a mixture of LTMs is employed. bf (3) We derive general formulas for magnification factors in latent trait models. Magnification factors are a useful tool to improve our understanding of the visualisation plots, since they can highlight the boundaries between data clusters. The unsupervised construction is particularly useful when high-level plots are covered with dense clusters of highly overlapping data projections, making it difficult to use the interactive mode. Such a situation often arises when visualizing large data sets. We illustrate our approach on a toy example and apply our system to three more complex real data sets.
Resumo:
Background. Diabetic nephropathy is the leading cause of end-stage kidney failure worldwide. It is characterized by excessive extracellular matrix accumulation. Transforming growth factor beta 1 (TGF-ß1) is a fibrogenic cytokine playing a major role in the healing process and scarring by regulating extracellular matrix turnover, cell proliferation and epithelial mesanchymal transdifferentiation. Newly synthesized TGF-ß is released as a latent, biologically inactive complex. The cross-linking of the large latent TGF-ß to the extracellular matrix by transglutaminase 2 (TG2) is one of the key mechanisms of recruitment and activation of this cytokine. TG2 is an enzyme catalyzing an acyl transfer reaction leading to the formation of a stable e(?-glutamyl)-lysine cross-link between peptides.Methods. To investigate if changes in TG activity can modulate TGF-ß1 activation, we used the mink lung cell bioassay to assess TGF-ß activity in the streptozotocin model of diabetic nephropathy treated with TG inhibitor NTU281 and in TG2 overexpressing opossum kidney (OK) proximal tubular epithelial cells.Results. Application of the site-directed TG inhibitor NTU281 caused a 25% reduction in kidney levels of active TGF-ß1. Specific upregulation of TG2 in OK proximal tubular epithelial cells increased latent TGF-ß recruitment and activation by 20.7% and 19.7%, respectively, in co-cultures with latent TGF-ß binding protein producing fibroblasts.Conclusions. Regulation of TG2 directly influences the level of active TGF-ß1, and thus, TG inhibition may exert a renoprotective effect by targeting not only a direct extracellular matrix deposition but also TGF-ß1 activation and recruitment.
Resumo:
Category-specific disorders are frequently explained by suggesting that living and non-living things are processed in separate subsystems (e.g. Caramazza & Shelton, 1998). If subsystems exist, there should be benefits for normal processing, beyond the influence of structural similarity. However, no previous study has separated the relative influences of similarity and semantic category. We created novel examples of living and non-living things so category and similarity could be manipulated independently. Pre-tests ensured that our images evoked appropriate semantic information and were matched for familiarity. Participants were trained to associate names with the images and then performed a name-verification task under two levels of time pressure. We found no significant advantage for living things alongside strong effects of similarity. Our results suggest that similarity rather than category is the key determinant of speed and accuracy in normal semantic processing. We discuss the implications of this finding for neuropsychological studies. © 2005 Psychology Press Ltd.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY WITH PRIOR ARRANGEMENT
Resumo:
This work explores the relevance of semantic and linguistic description to translation, theory and practice. It is aimed towards a practical model of approach to texts to translate. As literary texts [poetry mainly] are the focus of attention, so are stylistic matters. Note, however, that 'style', and, to some extent, the conclusions of the work, are not limited to so-called literary texts. The study of semantic description reveals that most translation problems do not stem from the cognitive (langue-related), but rather from the contextual (parole-related) aspects of meaning. Thus, any linguistic model that fails to account for the latter is bound to fall short. T.G.G. does, whereas Systemics, concerned with both the 'Iangue' and 'parole' (stylistic and sociolinguistic mainly) aspects of meaning, provides a useful framework of approach to texts to translate. Two essential semantic principles for translation are: that meaning is the property of a language (Firth); and the 'relativity of meaning assignments' (Tymoczko). Both imply that meaning can only be assessed, correctly, in the relevant socio-cultural background. Translation is seen as a restricted creation, and the translator's encroach as a three-dimensional critical one. To encompass the most technical to the most literary text, and account for variations in emphasis in any text, translation theory must be based on typology of function Halliday's ideational, interpersonal and textual, or, Buhler's symbol, signal, symptom, Functions3. Function Coverall and specific] will dictate aims and method, and also provide the critic with criteria to assess translation Faithfulness. Translation can never be reduced to purely objective methods, however. Intuitive procedures intervene, in textual interpretation and analysis, in the choice of equivalents, and in the reception of a translation. Ultimately, translation, theory and practice, may perhaps constitute the touchstone as regards the validity of linguistic and semantic theories.
Resumo:
In a series of experiments, we tested category-specific activation in normal parti¬cipants using magnetoencephalography (MEG). Our experiments explored the temporal processing of objects, as MEG characterises neural activity on the order of milliseconds. Our experiments explored object-processing, including assessing the time-course of ob¬ject naming, early differences in processing living compared with nonliving objects and processing objects at the basic compared with the domain level, and late differences in processing living compared with nonliving objects and processing objects at the basic compared with the domain level. In addition to studies using normal participants, we also utilised MEG to explore category-specific processing in a patient with a deficit for living objects. Our findings support the cascade model of object naming (Humphreys et al., 1988). In addition, our findings using normal participants demonstrate early, category-specific perceptual differences. These findings are corroborated by our patient study. In our assessment of the time-course of category-specific effects as well as a separate analysis designed to measure semantic differences between living and nonliving objects, we found support for the sensory/motor model of object naming (Martin, 1998), in addition to support for the cascade model of object naming. Thus, object processing in normal participants appears to be served by a distributed network in the brain, and there are both perceptual and semantic differences between living and nonliving objects. A separate study assessing the influence of the level at which you are asked to identify an object on processing in the brain found evidence supporting the convergence zone hypothesis (Damasio, 1989). Taken together, these findings indicate the utility of MEG in exploring the time-course of object processing, isolating early perceptual and later semantic effects within the brain.
Resumo:
The topic of this thesis is the development of knowledge based statistical software. The shortcomings of conventional statistical packages are discussed to illustrate the need to develop software which is able to exhibit a greater degree of statistical expertise, thereby reducing the misuse of statistical methods by those not well versed in the art of statistical analysis. Some of the issues involved in the development of knowledge based software are presented and a review is given of some of the systems that have been developed so far. The majority of these have moved away from conventional architectures by adopting what can be termed an expert systems approach. The thesis then proposes an approach which is based upon the concept of semantic modelling. By representing some of the semantic meaning of data, it is conceived that a system could examine a request to apply a statistical technique and check if the use of the chosen technique was semantically sound, i.e. will the results obtained be meaningful. Current systems, in contrast, can only perform what can be considered as syntactic checks. The prototype system that has been implemented to explore the feasibility of such an approach is presented, the system has been designed as an enhanced variant of a conventional style statistical package. This involved developing a semantic data model to represent some of the statistically relevant knowledge about data and identifying sets of requirements that should be met for the application of the statistical techniques to be valid. Those areas of statistics covered in the prototype are measures of association and tests of location.
Resumo:
This thesis presents a new approach to designing large organizational databases. The approach emphasizes the need for a holistic approach to the design process. The development of the proposed approach was based on a comprehensive examination of the issues of relevance to the design and utilization of databases. Such issues include conceptual modelling, organization theory, and semantic theory. The conceptual modelling approach presented in this thesis is developed over three design stages, or model perspectives. In the semantic perspective, concept definitions were developed based on established semantic principles. Such definitions rely on meaning - provided by intension and extension - to determine intrinsic conceptual definitions. A tool, called meaning-based classification (MBC), is devised to classify concepts based on meaning. Concept classes are then integrated using concept definitions and a set of semantic relations which rely on concept content and form. In the application perspective, relationships are semantically defined according to the application environment. Relationship definitions include explicit relationship properties and constraints. The organization perspective introduces a new set of relations specifically developed to maintain conformity of conceptual abstractions with the nature of information abstractions implied by user requirements throughout the organization. Such relations are based on the stratification of work hierarchies, defined elsewhere in the thesis. Finally, an example of an application of the proposed approach is presented to illustrate the applicability and practicality of the modelling approach.
Resumo:
Existing theories of semantic cognition propose models of cognitive processing occurring in a conceptual space, where ‘meaning’ is derived from the spatial relationships between concepts’ mapped locations within the space. Information visualisation is a growing area of research within the field of information retrieval, and methods for presenting database contents visually in the form of spatial data management systems (SDMSs) are being developed. This thesis combined these two areas of research to investigate the benefits associated with employing spatial-semantic mapping (documents represented as objects in two- and three-dimensional virtual environments are proximally mapped dependent on the semantic similarity of their content) as a tool for improving retrieval performance and navigational efficiency when browsing for information within such systems. Positive effects associated with the quality of document mapping were observed; improved retrieval performance and browsing behaviour were witnessed when mapping was optimal. It was also shown using a third dimension for virtual environment (VE) presentation provides sufficient additional information regarding the semantic structure of the environment that performance is increased in comparison to using two-dimensions for mapping. A model that describes the relationship between retrieval performance and browsing behaviour was proposed on the basis of findings. Individual differences were not found to have any observable influence on retrieval performance or browsing behaviour when mapping quality was good. The findings from this work have implications for both cognitive modelling of semantic information, and for designing and testing information visualisation systems. These implications are discussed in the conclusions of this work.
Resumo:
Evidence-based medicine relies on repositories of empirical research evidence that can be used to support clinical decision making for improved patient care. However, retrieving evidence from such repositories at local sites presents many challenges. This paper describes a methodological framework for automatically indexing and retrieving empirical research evidence in the form of the systematic reviews and associated studies from The Cochrane Library, where retrieved documents are specific to a patient-physician encounter and thus can be used to support evidence-based decision making at the point of care. Such an encounter is defined by three pertinent groups of concepts - diagnosis, treatment, and patient, and the framework relies on these three groups to steer indexing and retrieval of reviews and associated studies. An evaluation of the indexing and retrieval components of the proposed framework was performed using documents relevant for the pediatric asthma domain. Precision and recall values for automatic indexing of systematic reviews and associated studies were 0.93 and 0.87, and 0.81 and 0.56, respectively. Moreover, precision and recall for the retrieval of relevant systematic reviews and associated studies were 0.89 and 0.81, and 0.92 and 0.89, respectively. With minor modifications, the proposed methodological framework can be customized for other evidence repositories. © 2010 Elsevier Inc.
Resumo:
Component-based development (CBD) has become an important emerging topic in the software engineering field. It promises long-sought-after benefits such as increased software reuse, reduced development time to market and, hence, reduced software production cost. Despite the huge potential, the lack of reasoning support and development environment of component modeling and verification may hinder its development. Methods and tools that can support component model analysis are highly appreciated by industry. Such a tool support should be fully automated as well as efficient. At the same time, the reasoning tool should scale up well as it may need to handle hundreds or even thousands of components that a modern software system may have. Furthermore, a distributed environment that can effectively manage and compose components is also desirable. In this paper, we present an approach to the modeling and verification of a newly proposed component model using Semantic Web languages and their reasoning tools. We use the Web Ontology Language and the Semantic Web Rule Language to precisely capture the inter-relationships and constraints among the entities in a component model. Semantic Web reasoning tools are deployed to perform automated analysis support of the component models. Moreover, we also proposed a service-oriented architecture (SOA)-based semantic web environment for CBD. The adoption of Semantic Web services and SOA make our component environment more reusable, scalable, dynamic and adaptive.
Resumo:
Spoken language comprehension is known to involve a large left-dominant network of fronto-temporal brain regions, but there is still little consensus about how the syntactic and semantic aspects of language are processed within this network. In an fMRI study, volunteers heard spoken sentences that contained either syntactic or semantic ambiguities as well as carefully matched low-ambiguity sentences. Results showed ambiguity-related responses in the posterior left inferior frontal gyrus (pLIFG) and posterior left middle temporal regions. The pLIFG activations were present for both syntactic and semantic ambiguities suggesting that this region is not specialised for processing either semantic or syntactic information, but instead performs cognitive operations that are required to resolve different types of ambiguity irrespective of their linguistic nature, for example by selecting between possible interpretations or reinterpreting misparsed sentences. Syntactic ambiguities also produced activation in the posterior middle temporal gyrus. These data confirm the functional relationship between these two brain regions and their importance in constructing grammatical representations of spoken language.
Resumo:
Early, lesion-based models of language processing suggested that semantic and phonological processes are associated with distinct temporal and parietal regions respectively, with frontal areas more indirectly involved. Contemporary spatial brain mapping techniques have not supported such clear-cut segregation, with strong evidence of activation in left temporal areas by both processes and disputed evidence of involvement of frontal areas in both processes. We suggest that combining spatial information with temporal and spectral data may allow a closer scrutiny of the differential involvement of closely overlapping cortical areas in language processing. Using beamforming techniques to analyze magnetoencephalography data, we localized the neuronal substrates underlying primed responses to nouns requiring either phonological or semantic processing, and examined the associated measures of time and frequency in those areas where activation was common to both tasks. Power changes in the beta (14-30 Hz) and gamma (30-50 Hz) frequency bandswere analyzed in pre-selected time windows of 350-550 and 500-700ms In left temporal regions, both tasks elicited power changes in the same time window (350-550 ms), but with different spectral characteristics, low beta (14-20 Hz) for the phonological task and high beta (20-30 Hz) for the semantic task. In frontal areas (BA10), both tasks elicited power changes in the gamma band (30-50 Hz), but in different time windows, 500-700ms for the phonological task and 350-550ms for the semantic task. In the left inferior parietal area (BA40), both tasks elicited changes in the 20-30 Hz beta frequency band but in different time windows, 350-550ms for the phonological task and 500-700ms for the semantic task. Our findings suggest that, where spatial measures may indicate overlapping areas of involvement, additional beamforming techniques can demonstrate differential activation in time and frequency domains. © 2012 McNab, Hillebrand, Swithenby and Rippon.
Resumo:
The success of the Semantic Web, as the next generation of Web technology, can have profound impact on the environment for formal software development. It allows both the software engineers and machines to understand the content of formal models and supports more effective software design in terms of understanding, sharing and reusing in a distributed manner. To realise the full potential of the Semantic Web in formal software development, effectively creating proper semantic metadata for formal software models and their related software artefacts is crucial. In this paper, a methodology with tool support is proposed to automatically derive ontological metadata from formal software models and semantically describe them.