996 resultados para Large friction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical study of three-dimensional evolution of wake-type flow and vortex dislocations is performed by using a compact finite diffenence-Fourier spectral method to solve 3-D incompressible Navier-Stokes equations. A local spanwise nonuniformity in momentum defect is imposed on the incoming wake-type flow. The present numerical results have shown that the flow instability leads to three-dimensional vortex streets, whose frequency, phase as well as the strength vary with the span caused by the local nonuniformity. The vortex dislocations are generated in the nonuniform region and the large-scale chain-like vortex linkage structures in the dislocations are shown. The generation and the characteristics of the vortex dislocations are described in detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 3-dimensiqnal incompressible Rayleigh-Taylor instability is numerically studied through the large-eddy-simulation (LES) approach based on the passive scalar transport model. Both the instantaneous velocity and the passive scalar fields excited by sinu

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A self-assembled monolayer of octadecyltrichlorosilane (OTS) was prepared on a single-crystal silicon wafer (111) and its tribological properties were examined with a one-way reciprocating tribometer. The worn surfaces and transfer film on the counterface were analyzed by means of scanning electron microscopy and X-ray photoelectron spectroscopy. The results show that, due to the wear of the OTS monolayer and the formation of the transfer film on the counterpart ball, the friction coefficient gradually increases from 0.06 to 0.13 with increasing sliding cycles and then keeps stable at a normal load of 0.5N. The transfer film is characterized by deposition, accumulation, and spalling at extended test duration. Though low friction coefficients of the monolayer in sliding against steel or ceramic counterfaces are recorded, poor load-carrying capacity and antiwear ability are also shown. Moreover, the monolayer itself or the corresponding transfer film on the counterface fails to lubricate even at a normal load of 1.0 N. Thus, the self-assembled monolayer of octadecyltrichlorosilane can be a potential boundary lubricant only at very low loads.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Slip-weakening is one of the characteristics of geological materials under certain loadings. Non-uniform rock structure may exist in the vicinity of the slip surface for a rock slope. Some portion of the slip surface may be penetrated but the other not. For the latter case, the crack or the fault surface will undergo shear deformation before it becomes a successive surface under a certain loading. As the slipped portion advances,slip-weakening occurs over a distance behind the crack tip. In the weakening zone, the shear strength will decrease from its peak value to residual friction level. The stress will redistribute along the surface of crack and in the weakening zone. Thus the changed local stress concentration leads the crack to extend and the ratio of penetration of the slip surface to increase. From the view of large-scale for the whole slip surface, the shear strength will decrease due to the damage of interior rock structure, and the faulted rock behaves as a softening material. Such a kind of mechanism performs in a large number of practical landslides in the zones experienced strong earthquakes. It should be noted that the mechanism mentioned above is different from that of the breakage of structural clay,in which the geological material is regarded as a medium containing structural lumps and structural bands. In this paper, the softening behavior of a faulted rock should be regarded as a comprehensive result of the whole complicated process including slip-weakening, redistribution of stress, extension of crack tip, and the penetration of the slip surface. This process is accompanied by progressive failure and abrupt structural damage. The size of slip-weakening zone is related to the undergoing strain. Once the relative slide is initiated (local or integrated), the effect of slip-weakening will behave in a certain length behind the crack tip until the formation of the whole slip surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of the unresolved subgrid-scale (SGS) motions on the energy balance of the resolved scales in large eddy simulation (LES) have been investigated actively because modeling the energy transfer between the resolved and unresolved scales is crucial to constructing accurate SGS models. But the subgrid scales not only modify the energy balance, they also contribute to temporal decorrelation of the resolved scales. The importance of this effect in applications including the predictability problem and the evaluation of sound radiation by turbulent flows motivates the present study of the effect of SGS modeling on turbulent time correlations. This paper compares the two-point, two-time Eulerian velocity correlation in isotropic homogeneous turbulence evaluated by direct numerical simulation (DNS) with the correlations evaluated by LES using a standard spectral eddy viscosity. It proves convenient to express the two-point correlations in terms of spatial Fourier decomposition of the velocity field. The LES fields are more coherent than the DNS fields: their time correlations decay more slowly at all resolved scales of motion and both their integral scales and microscales are larger than those of the DNS field. Filtering alone is not responsible for this effect: in the Fourier representation, the time correlations of the filtered DNS field are identical to those of the DNS field itself. The possibility of modeling the decorrelating effects of the unresolved scales of motion by including a random force in the model is briefly discussed. The results could have applications to the problem of computing sound sources in isotropic homogeneous turbulence by LES

Relevância:

20.00% 20.00%

Publicador:

Resumo:

采用双向耦合的双流体模型,研究了大气悬浮沙尘的存在对大气边界层中层流底层流动特性及摩阻系数的影响,计算并讨论了不同沙尘含量下含尘大气相对于无尘大气摩阻系数的变化。结果表明:摩阻系数的变化取决于悬浮沙尘的初始运动状态和质量载荷率。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new DC plasma torch in which are jet states and deposition parameters can be regulated over a wide range has been built. It showed advantages in producing stable plasma conditions at a small gas flow rate. Plasma jets with and without magnetically rotated arcs could be generated. With straight are jet deposition, diamond films could be formed at a rate of 39 mu m/h on Mo substrates of Phi 25 mm, and the conversion rate of carbon in CH4 to diamond was less than 3%. Under magnetically rotated conditions, diamond films could be deposited uniformly in a range of Phi 40 mm at 30 mu m/h, with a quite low total gas flow rate and high carbon conversion rate of over 11%. Mechanisms of rapid and uniform deposition of diamond films with low gas consumption and high carbon transition efficiency are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the current paper, we have primarily addressed one powerful simulation tool developed during the last decades-Large Eddy Simulation (LES), which is most suitable for unsteady three-dimensional complex turbulent flows in industry and natural environment. The main point in LES is that the large-scale motion is resolved while the small-scale motion is modeled or, in geophysical terminology, parameterized. With a view to devising a subgrid-scale(SGS) model of high quality, we have highlighted analyzing physical aspects in scale interaction and-energy transfer such as dissipation, backscatter, local and non-local interaction, anisotropy and resolution requirement. They are the factors responsible for where the advantages and disadvantages in existing SGS models come from. A case study on LES of turbulence in vegetative canopy is presented to illustrate that LES model is more based on physical arguments. Then, varieties of challenging complex turbulent flows in both industry and geophysical fields in the near future-are presented. In conclusion; we may say with confidence that new century shall see the flourish in the research of turbulence with the aid of LES combined with other approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distribution of stress-strain near a crack tip in a rubber sheet is investigated by employing the constitutive relation given by Gao (1997). It is shown that the crack tip field is composed of two shrinking sectors and one expanding sector. The stress state near the crack tip is in uniaxial tension. The analytical solutions are obtained for both expanding and shrinking sectors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this letter, the uniform lying helix (ULH) liquid crystal texture, required for the flexoelectro-optic effect, is polymer stabilized by the addition of a small percentage of reactive mesogen to a high-tilt-angle (φ>60°) bimesogenic chiral nematic host. The electro-optic response is measured for a range of reactive mesogen concentration mixtures, and compared to the large-tilt-angle switch of the pure chiral nematic mixture. The optimum concentration of reactive mesogen, which is found to provide ample stabilization of the texture with minimal impact on the electro-optic response, is found to be approximately 3%. Our results indicate that polymer stabilization of the ULH texture using a very low concentration of reactive mesogen is a reliable way of ruggedizing flexoelectro-optic devices without interfering significantly with the electro-optics of the effect, negating the need for complicated surface alignment patterns or surface-only polymerization. The polymer stabilization is shown to reduce the temperature dependence of the flexoelectro-optic response due to "pinning" of the chiral nematic helical pitch. This is a restriction of the characteristic thermochromic behavior of the chiral nematic. Furthermore, selection of the temperature at which the sample is ultraviolet cured allows the tilt angle to be optimized for the entire chiral nematic temperature range. The response time, however, remains more sensitive to operating temperature than curing temperature. This allows the sample to be cured at low temperature and operated at high temperature, providing simultaneous optimization of these two previously antagonistic performance aspects. © 2006 American Institute of Physics.