974 resultados para Lac-insects
Resumo:
The article discusses a new decision support process for forestry pest management. Over the past few years, DSS have been introduced for forestry pest management, providing forest growers with advice in areas such as selecting the most suitable pesticide and relevant treatment. Most of the initiatives process knowledge from various domains for providing support for specific decision making problems. However, very few studies have identified the requirements of developing a combined process model in which all relevant practitioners can contribute and share knowledge for effective decision making; such an approach would need to include the decision makers’ perspective along with other relevant attributes such as the problem context and relevant policies. We outline a decision support process for forestry pest management, based on the design science research paradigm, in which a focus group technique has application to acquire both expert and practical knowledge in order to construct the DSS solution.
Resumo:
The plant phenotypic preference and performance of Aconophora compressa, a biocontrol agent for Lantana camara in Australia, were assessed. Overall, there were no significant trends of A. compressa favouring any one particular phenotype. However, there was a gradual decrease in performance through subsequent generations, with populations of A. compressa dying out on two phenotypes. Females did not show preference for any particular lantana phenotype, ovipositing similarly on all five phenotypes presented in choice trials and all 16 phenotypes in no-choice trials. Nymphs developed on all 16 phenotypes tested. Percent development and time to complete development were not significant in the first generation but were significant in the second generation. There was a general decrease in performance with generation. However, this was probably due to rising temperatures with season rather than an effect of phenotype. These results suggest that A. compressa should establish on all phenotypes within its geographic range.
Resumo:
Eucalyptus species, native to Australia, Indonesia, the Philippines, and New Guinea, are the most widely planted hardwood timber species in the world. The trees, moved around the globe as seeds, escaped the diverse community of herbivores found in their native range. However, a number of herbivore species from the native range of eucalypts have invaded many Eucalyptus-growing regions in North America, Europe, Africa, Asia, and South America in the last 30 years. In addition, there have been shifts of native species, particularly in Africa, Asia, and South America, onto Eucalyptus. There are risks that these species as well as generalist herbivores from other parts of the world will invade Australia and threaten the trees in their native range. The risk to Eucalyptus plantations in Australia is further compounded by planting commercially important species outside their endemic range and shifting of local herbivore populations onto new host trees. Understanding the mechanisms underlying host specificity of Australian insects can provide insight into patterns of host range expansion of both native and exotic insects.
Resumo:
This proceedings contains abstracts of 108 papers focusing on the different Tospovirus diseases of various crops and their thysanopteran vectors. The genetics of these pests and pathogens, the different methods used in their control and their geographical distribution are also highlighted.
Resumo:
Abstract Sceliodes cordalis, eggfruit caterpillar, is an important pest of eggplant in Australia but little information was available on its biology. This study was conducted to determine the effect of temperature on the development on eggplant of eggs, larvae and pupae. Insects were reared at five constant temperatures from 20.5°C to 30.5°C with a 12:12 L : D photoperiod and the thermal summation model was fitted to the developmental rate data. Developmental zeroes and thermal constants of 11.22°C and 61.32 day-degrees for eggs, 12.03°C and 179.60 day-degrees for larvae, and 14.43°C and 107.03 day-degrees for pupae were determined. Several larvae reared at 20.5°C entered diapause.
Resumo:
Healthy hardwoods: A field guide to pests, diseases and nutritional disorders in subtropical hardwoods can be used to help identify the common damaging insects, fungi and nutritional disorders in young eucalypt (Eucalyptus and Corymbia species) plantations in subtropical eastern Australia. This guide includes photographs of each insect, fungus and nutritional disorder and the damage they cause, along with a brief description to aid identification. A brief host list for insects and fungi, including susceptibility and occurrence, is provided as a guide only. A hand lens will be useful, especially to identify fungi. Although it is possible to identify insects and fungi from these photographs, laboratory examination will sometimes be necessary. For example, microscopes and culturing media might be used to identify fungi. Information about four exotic pests and diseases has also been included in the Biosecurity threats chapter. Potentially, these would have a severe impact on plantation and natural forests if introduced into Australia. To prevent establishment of these pests, early detection and identification is crucial. If an exotic insect or disease is suspected, then an immediate response is required. Usually, the first response will be to contact the nearest Australian Quarantine and Inspection Service office or forestry agency to seek advice.
Resumo:
Studies in both vertebrates and invertebrates have identified proteins of the Hedgehog (Hh) family of secreted signaling molecules as key organizers of tissue patterning. Initially discovered in Drosophila in 1992, Hh family members have been discovered in animals with body plans as diverse as those of mammals, insects and echinoderms. In humans three related Hh genes have been identified: Sonic, Indian and Desert hedgehog (Shh, Ihh and Dhh). Transduction of the Hh signal to the cytoplasm utilizes an unusual mechanism involving consecutive repressive interactions between Hh and its receptor components, Patched (Ptc) and Smoothened (Smo). Several cytoplasmic proteins involved in Hh signal transduction are known in Drosophila, but mammalian homologs are known only for the Cubitus interruptus (Ci) transcription factor (GLI(1-3)) and for the Ci/GLI-associated protein, Suppressor of Fused (Su(fu)). In this study I analyzed the mechanisms of how the Hh receptor Ptc regulates the signal transducer Smo, and how Smo relays the Shh signal from the cell surface to the cytoplasm ultimately leading to the activation of GLI transcription factors. In Drosophila, the kinesin-like protein Costal2 (Cos2) is required for suppression of Hh target gene expression in the absence of ligand, and loss of Cos2 causes embryonic lethality. Cos2 acts by bridging Smo to the Ci. Another protein, Su(Fu) exerts a weak suppressive influence on Ci activity and loss of Su(Fu) causes subtle changes in Drosophila wing pattern. This study revealed that domains in Smo that are critical for Cos2 binding in Drosophila are dispensable for mammalian Smo function. Furthermore, by analyzing the function of Su(Fu) and the closest mouse homologs of Cos2 by protein overexpression and RNA interference I found that inhibition of the Hh response pathway in the absence of ligand does not require Cos2 activity, but instead critically depends on the activity of Su(Fu). These results indicate that a major change in the mechanism of action of a conserved signaling pathway occurred during evolution, probably through phenotypic drift made possible by the existence in some species of two parallel pathways acting between the Hh receptor and the Ci/GLI transcription factors. In a second approach to unravel Hh signaling we cloned > 90% of all human full-length protein kinase cDNAs and constructed the corresponding kinase-activity deficient mutants. Using this kinome resource as a screening tool, two kinases, MAP3K10 and DYRK2 were found to regulate Shh signaling. DYRK2 directly phosphorylated and induced the proteasome dependent degradation of the key Hh-pathway regulated transcription factor, GLI2. MAP3K10, in turn, affected GLI2 indirectly by modulating the activity of DYRK2.
Resumo:
Tribolium castaneum (Herbst) has been used as a model organism to develop and test important ecological and evolutionary concepts and is also a major pest of grain and grain products globally. This beetle species is assumed to be a good colonizer of grain storages through anthropogenic movement of grain, and active dispersal by flight is considered unlikely. Studies using T. castaneum have therefore used confined or walking insects. We combine an ecological study of dispersal with an analysis of gene flow using microsatellites to investigate the spatiotemporal dynamics and adult flight of T. castaneum in an ecological landscape in eastern Australia. Flying beetles were caught in traps at grain storages and in fields at least 1 km from the nearest stored grain at regular intervals for an entire year. Significantly more beetles were trapped at storages than in fields, and almost no beetles were caught in native vegetation reserves many kilometres from the nearest stored grain. Genetic differentiation between beetles caught at storages and in fields was low, indicating that although T. castaneum is predominantly aggregated around grain storages, active dispersal takes place to the extent that significant gene flow occurs between them, mitigating founder effects and genetic drift. By combining ecological and molecular techniques, we reveal much higher levels of active dispersal through adult flight in T. castaneum than previously thought. We conclude that the implications of adult flight to previous and future studies on this model organism warrant consideration.
Resumo:
The Australian chicken meat industry requires effective agents for the management of lesser mealworm in broiler houses. The only two appropriate insecticides currently registered are cyfluthrin and spinosad, with gamma cyhalothrin being developed for registration. The industry requires the efficacy of cyfluthrin to be investigated, with progress and adoption of the latter two chemicals. Optimising the efficacy of each chemical and studying them singly and in rotation will, in addition to improving their efficacy, reduce overall insecticide use and improve their cost effectiveness.
Resumo:
Management of insecticide resistance.
Resumo:
For approximately three decades the Australian broiler industry has relied heavily on the use of insecticides as its key tool for management of darkling beetle or lesser mealworm, Alphitobius diaperinus [Panzer] in broiler houses. The use of these chemicals over this period has been largely unchecked which has resulted in the development of strong insecticide resistance in many beetle populations from broiler farms. Although we are in a period now with an improved knowledge of managing resistance and the availability of new more effective insecticides that are currently marketed, the industry still requires more pest management options in order to inhibit development of resistance and reduce overall chemical use. In response to this need, ‘natural’ agents such as entomopathogenic nematodes and fungi were proposed as potential agents for managing darkling beetle populations in Australian broiler houses. Since 2007 laboratory and field studies have been undertaken to assess these agents. This report outlines these studies and discusses potential benefits to the Chicken Meat industry resulting from this research.
Resumo:
Insects can cause considerable damage in hardwood plantations and because pesticide use is controversial, future pest management may rely on manipulating insect behaviour. Insects use infochemical cues to identify and locate mates and host plants and this can be used to manipulate their behaviour and reduce pest impacts in plantations. Infochemicals include chemical signals produced by insects, such as pheromones and kairomones, or those produced by host plants as odours or volatiles that are attractive to insects. This research is learning how insects perceive and interact with chemical cues or infochemicals in their environment and how these interactions can be manipulated for monitoring and control. Pest species being investigated include the giant wood moth (Endoxyla cinerea), Culama wood moths, the eucalypt leaf beetle (Paropsis atomaria), red cedar tip moth (Hypsipyla robusta) and several longicorn wood borers. The project will contribute to new strategies for minimising damage and controlling pest densities in Queensland's hardwood plantations.
Resumo:
The endosymbiotic bacterium Wolbachia pipientis infects many species of insects and has been transinfected into the mosquito Aedes aegypti (L.), the primary vector of dengue virus (DENV). Recently, it has been shown that Wolbachia blocks the replication and transmission of RNA viruses, such as DENV, in a number of mosquito species including Ae. aegypti and Aedes albopictus (Skuse), which is naturally infected with Wolbachia and considered a secondary vector for DENV. The mosquito species Aedes notoscriptus (Skuse) is highly prevalent in Australia, including in areas where DENV outbreaks have been recorded. The mosquito has been implicated in the transmission of Ross River and Barmah Forest viruses, but not DENV. We investigated whether Wolbachia naturally infects this mosquito species and whether it has an impact on the ability of Ae. notoscriptus to transmit DENV. We show, for the first time, that Ae. notoscriptus is naturally infected with a strain of Wolbachia that belongs to supergroup B and is localized only in the ovaries. However, Wolbachia infection in Ae. notoscriptus did not induce resistance to DENV and had no effect on overall DENV infection rate or titer. The presence of a native Wolbachia in Ae. notoscriptus cannot explain why this mosquito is an ineffective vector of DENV.
Resumo:
The major objective is to produce an educational tool for growers and research/extension personnel to allow accurate identification of a range of pests and diseases encountered in herbs. To a lessor extent develop both a mechanism to manage beneficial insects in field crops pre-harvest and to identify some common seed borne diseases in herbs.
Resumo:
Testing of the efficacy of a long-acting termite bait toxicant system.