924 resultados para LOGGING SCENARIOS
Resumo:
This study aimed to quantify the efficiency of deep bag and electrostatic filters, and assess the influence of ventilation systems using these filters on indoor fine (<2.5 µm) and ultrafine particle concentrations in commercial office buildings. Measurements and modelling were conducted for different indoor and outdoor particle source scenarios at three office buildings in Brisbane, Australia. Overall, the in-situ efficiency, measured for particles in size ranges 6 to 3000 nm, of the deep bag filters ranged from 26.3 to 46.9% for the three buildings, while the in-situ efficiency of the electrostatic filter in one building was 60.2%. The highest PN and PM2.5 concentrations in one of the office buildings (up to 131% and 31% higher than the other two buildings, respectively) were due to the proximity of the building’s HVAC air intakes to a nearby bus-only roadway, as well as its higher outdoor ventilation rate. The lowest PN and PM2.5 concentrations (up to 57% and 24% lower than the other two buildings, respectively) were measured in a building that utilised both outdoor and mixing air filters in its HVAC system. Indoor PN concentrations were strongly influenced by outdoor levels and were significantly higher during rush-hours (up to 41%) and nucleation events (up to 57%), compared to working-hours, for all three buildings. This is the first time that the influence of new particle formation on indoor particle concentrations has been identified and quantified. A dynamic model for indoor PN concentration, which performed adequately in this study also revealed that using mixing/outdoor air filters can significantly reduce indoor particle concentration in buildings where indoor air was strongly influenced by outdoor particle levels. This work provides a scientific basis for the selection and location of appropriate filters and outdoor air intakes, during the design of new, or upgrade of existing, building HVAC systems. The results also serve to provide a better understanding of indoor particle dynamics and behaviours under different ventilation and particle source scenarios, and highlight effective methods to reduce exposure to particles in commercial office buildings.
Resumo:
This paper presents an approach to assess the resilience of a water supply system under the impacts of climate change. Changes to climate characteristics such as rainfall, evapotranspiration and temperature can result in changes to the global hydrological cycle and thereby adversely impact on the ability of water supply systems to meet service standards in the future. Changes to the frequency and characteristics of floods and droughts as well as the quality of water provided by groundwater and surface water resources are the other consequences of climate change that will affect water supply system functionality. The extent and significance of these changes underline the necessity for assessing the future functionality of water supply systems under the impacts of climate change. Resilience can be a tool for assessing the ability of a water supply system to meet service standards under the future climate conditions. The study approach is based on defining resilience as the ability of a system to absorb pressure without going into failure state as well as its ability to achieve an acceptable level of function quickly after failure. In order to present this definition in the form of a mathematical function, a surrogate measure of resilience has been proposed in this paper. In addition, a step-by-step approach to estimate resilience of water storage reservoirs is presented. This approach will enable a comprehensive understanding of the functioning of a water storage reservoir under future climate scenarios and can also be a robust tool to predict future challenges faced by water supply systems under the consequence of climate change.
Resumo:
Whether to keep products segregated (e.g., unbundled) or integrate some or all of them (e.g., bundle) has been a problem of profound interest in areas such as portfolio theory in finance, risk capital allocations in insurance and marketing of consumer products. Such decisions are inherently complex and depend on factors such as the underlying product values and consumer preferences, the latter being frequently described using value functions, also known as utility functions in economics. In this paper, we develop decision rules for multiple products, which we generally call ‘exposure units’ to naturally cover manifold scenarios spanning well beyond ‘products’. Our findings show, e.g. that the celebrated Thaler's principles of mental accounting hold as originally postulated when the values of all exposure units are positive (i.e. all are gains) or all negative (i.e. all are losses). In the case of exposure units with mixed-sign values, decision rules are much more complex and rely on cataloging the Bell number of cases that grow very fast depending on the number of exposure units. Consequently, in the present paper, we provide detailed rules for the integration and segregation decisions in the case up to three exposure units, and partial rules for the arbitrary number of units.
Resumo:
The invention relates to a method for monitoring user activity on a mobile device, comprising an input and an output unit, comprising the following steps preferably in the following order: detecting and / or logging user activity on said input unit, identifying a foreground running application, hashing of a user-interface-element management list of the foreground running application, and creating a screenshot comprising items displayed on said input unit. The invention also relates to a method for analyzing user activity at a server, comprising the following step: obtaining at least one of an information about detected and / or logged user activity, an information about a foreground running application, a hashed user-interface-element management list and a screenshot from a mobile device. Further, a computer program product is provided, comprising one or more computer readable media having computer executable instructions for performing the steps of at least one of the aforementioned methods.
Resumo:
The increased adoption of business process management approaches, tools and practices, has led organizations to accumulate large collections of business process models. These collections can easily include hundred to thousand models, especially in the context of multinational corporations or as a result of organizational mergers and acquisitions. A concrete problem is thus how to maintain these large repositories in such a way that their complexity does not hamper their practical usefulness as a means to describe and communicate business operations. This paper proposes a technique to automatically infer suitable names for business process models and fragments thereof. This technique is useful for model abstraction scenarios, as for instance when user-specific views of a repository are required, or as part of a refactoring initiative aimed to simplify the repository’s complexity. The technique is grounded in an adaptation of the theory of meaning to the realm of business process models. We implemented the technique in a prototype tool and conducted an extensive evaluation using three process model collections from practice and a case study involving process modelers with different experience.
Resumo:
The article focuses on how the information seeker makes decisions about relevance. It will employ a novel decision theory based on quantum probabilities. This direction derives from mounting research within the field of cognitive science showing that decision theory based on quantum probabilities is superior to modelling human judgements than standard probability models [2, 1]. By quantum probabilities, we mean decision event space is modelled as vector space rather than the usual Boolean algebra of sets. In this way,incompatible perspectives around a decision can be modelled leading to an interference term which modifies the law of total probability. The interference term is crucial in modifying the probability judgements made by current probabilistic systems so they align better with human judgement. The goal of this article is thus to model the information seeker user as a decision maker. For this purpose, signal detection models will be sketched which are in principle applicable in a wide variety of information seeking scenarios.
Resumo:
Evolutionary computation is an effective tool for solving optimization problems. However, its significant computational demand has limited its real-time and on-line applications, especially in embedded systems with limited computing resources, e.g., mobile robots. Heuristic methods such as the genetic algorithm (GA) based approaches have been investigated for robot path planning in dynamic environments. However, research on the simulated annealing (SA) algorithm, another popular evolutionary computation algorithm, for dynamic path planning is still limited mainly due to its high computational demand. An enhanced SA approach, which integrates two additional mathematical operators and initial path selection heuristics into the standard SA, is developed in this work for robot path planning in dynamic environments with both static and dynamic obstacles. It improves the computing performance of the standard SA significantly while giving an optimal or near-optimal robot path solution, making its real-time and on-line applications possible. Using the classic and deterministic Dijkstra algorithm as a benchmark, comprehensive case studies are carried out to demonstrate the performance of the enhanced SA and other SA algorithms in various dynamic path planning scenarios.
Resumo:
Big Data is a rising IT trend similar to cloud computing, social networking or ubiquitous computing. Big Data can offer beneficial scenarios in the e-health arena. However, one of the scenarios can be that Big Data needs to be kept secured for a long period of time in order to gain its benefits such as finding cures for infectious diseases and protecting patient privacy. From this connection, it is beneficial to analyse Big Data to make meaningful information while the data is stored securely. Therefore, the analysis of various database encryption techniques is essential. In this study, we simulated 3 types of technical environments, namely, Plain-text, Microsoft Built-in Encryption, and custom Advanced Encryption Standard, using Bucket Index in Data-as-a-Service. The results showed that custom AES-DaaS has a faster range query response time than MS built-in encryption. Furthermore, while carrying out the scalability test, we acknowledged that there are performance thresholds depending on physical IT resources. Therefore, for the purpose of efficient Big Data management in eHealth it is noteworthy to examine their scalability limits as well even if it is under a cloud computing environment. In addition, when designing an e-health database, both patient privacy and system performance needs to be dealt as top priorities.
Resumo:
The existence of Macroscopic Fundamental Diagram (MFD), which relates space-mean density and flow, has been shown in urban networks under homogeneous traffic conditions. Since MFD represents the area-wide network traffic performances, studies on perimeter control strategies and an area traffic state estimation utilizing the MFD concept has been reported. One of the key requirements for well-defined MFD is the homogeneity of the area-wide traffic condition with links of similar properties, which is not universally expected in real world. For the practical application of the MFD concept, several researchers have identified the influencing factors for network homogeneity. However, they did not explicitly take the impact of drivers’ behaviour and information provision into account, which has a significant impact on simulation outputs. This research aims to demonstrate the effect of dynamic information provision on network performance by employing the MFD as a measurement. A microscopic simulation, AIMSUN, is chosen as an experiment platform. By changing the ratio of en-route informed drivers and pre-trip informed drivers different scenarios are simulated in order to investigate how drivers’ adaptation to the traffic congestion influences the network performance with respect to the MFD shape as well as other indicators, such as total travel time. This study confirmed the impact of information provision on the MFD shape, and addressed the usefulness of the MFD for measuring the dynamic information provision benefit.
Resumo:
In this paper we introduce a novel design for a translational medical research ecosystem. Translational medical research is an emerging field of work, which aims to bridge the gap between basic medical science research and clinical research/patient care. We analyze the key challenges of digital ecosystems for translational research, based on real world scenarios posed by the Lab for Translational Research at the Harvard Medical School and the Genomics Research Centre of the Griffith University, and show how traditional IT approaches fail to fulfill these challenges. We then introduce our design for a translational research ecosystem. Several key contributions are made: A novel approach to managing ad-hoc research ecosystems is introduced; a new security approach for translational research is proposed which allows each participating site to retain control over its data and define its own policies to ensure legal and ethical compliance; and a design for a novel interactive access control framework which allows users to easily share data, while adhering to their organization's policies is presented.
Resumo:
Nitrous oxide emissions from soil are known to be spatially and temporally volatile. Reliable estimation of emissions over a given time and space depends on measuring with sufficient intensity but deciding on the number of measuring stations and the frequency of observation can be vexing. The question of low frequency manual observations providing comparable results to high frequency automated sampling also arises. Data collected from a replicated field experiment was intensively studied with the intention to give some statistically robust guidance on these issues. The experiment had nitrous oxide soil to air flux monitored within 10 m by 2.5 m plots by automated closed chambers under a 3 h average sampling interval and by manual static chambers under a three day average sampling interval over sixty days. Observed trends in flux over time by the static chambers were mostly within the auto chamber bounds of experimental error. Cumulated nitrous oxide emissions as measured by each system were also within error bounds. Under the temporal response pattern in this experiment, no significant loss of information was observed after culling the data to simulate results under various low frequency scenarios. Within the confines of this experiment observations from the manual chambers were not spatially correlated above distances of 1 m. Statistical power was therefore found to improve due to increased replicates per treatment or chambers per replicate. Careful after action review of experimental data can deliver savings for future work.
Resumo:
This article asks questions about the futures of power in the network era. Two critical emerging issues are at work with uncertain outcomes. The first is the emergence of the collaborative economy, while the second is the emergence of surveillance capabilities from both civic, state and commercial sources. While both of these emerging issues are expected by many to play an important role in the future development of our societies, it is still unclear whose values and whose purposes will be furthered. This article argues that the futures of these emerging issues depend on contests for power. As such, four scenarios are developed for the futures of power in the network era using the double variable scenario approach.
Resumo:
A microgrid can span over a large area, especially in rural townships. In such cases, the distributed generators (DGs) must be controlled in a decentralized fashion, based on the locally available measurements. The main concerns are control of system voltage magnitude and frequency, which can either lead to system instability or voltage collapse. In this chapter, the operational challenges of load frequency control in a microgrid are discussed and few methods are proposed to meet these challenges. In particular, issues of power sharing, power quality and system stability are addressed, when the system operates under decentralized control. The main focus of this chapter is to provide solutions to improve the system performance in different situations. The scenarios considered are (a) when the system stability margin is low, (b) when the line impedance has a high R to X ratio, (c) when the system contains unbalanced and/or distorted loads. Also a scheme is proposed in which a microgrid can be frequency isolated from a utility grid while being capable of bidirectional power transfer. In all these cases, the use of angle droop in converter interfaced DGs is adopted. It has been shown that this results in a more responsive control action compared to the traditional frequency based droop control.
Resumo:
Objectives Early childhood caries is a highly destructive dental disease which is compounded by the need for young children to be treated under general anaesthesia. In Australia, there are long waiting periods for treatment at public hospitals. In this paper, we examined the costs and patient outcomes of a prevention programme for early childhood caries to assess its value for government services. Design Cost-effectiveness analysis using a Markov model. Setting Public dental patients in a low socioeconomic, socially disadvantaged area in the State of Queensland, Australia. Participants Children aged 6 months to 6 years received either a telephone prevention programme or usual care. Primary and secondary outcome measures A mathematical model was used to assess caries incidence and public dental treatment costs for a cohort of children. Healthcare costs, treatment probabilities and caries incidence were modelled from 6 months to 6 years of age based on trial data from mothers and their children who received either a telephone prevention programme or usual care. Sensitivity analyses were used to assess the robustness of the findings to uncertainty in the model estimates. Results By age 6 years, the telephone intervention programme had prevented an estimated 43 carious teeth and saved £69 984 in healthcare costs per 100 children. The results were sensitive to the cost of general anaesthesia (cost-savings range £36 043–£97 298) and the incidence of caries in the prevention group (cost-savings range £59 496–£83 368) and usual care (cost-savings range £46 833–£93 328), but there were cost savings in all scenarios. Conclusions A telephone intervention that aims to prevent early childhood caries is likely to generate considerable and immediate patient benefits and cost savings to the public dental health service in disadvantaged communities.
Resumo:
The Bus Rapid Transit (BRT) station is the interface between passengers and services. The station is crucial to line operation as it is typically the only location where buses can pass each other. Congestion may occur here when buses maneuvering into and out of the platform lane interfere with bus flow, or when a queue of buses forms upstream of the platform lane blocking the passing lane. Further, some systems include operation where express buses do not observe the station, resulting in a proportion of non-stopping buses. It is important to understand the operation of the station under this type of operation and its effect on BRT line capacity. This study uses microscopic traffic simulation modeling to treat the BRT station operation and to analyze the relationship between station bus capacity and BRT line bus capacity. First, the simulation model is developed for the limit state scenario and then a statistical model is defined and calibrated for a specified range of controlled scenarios of dwell time characteristics. A field survey was conducted to verify the parameters such as dwell time, clearance time and coefficient of variation of dwell time to obtain relevant station bus capacity. The proposed model for BRT bus capacity provides a better understanding of BRT line capacity and is useful to transit authorities in BRT planning, design and operation.