887 resultados para LIGAND-BASED DRUG DESIGN
Resumo:
What is the scope and responsibilities of design? This work partially answers this by employing a normative approach to design of a biomass cook stove. This study debates on the sufficiency of existing design methodologies in the light of a capability approach. A case study of a biomass cook stove Astra Ole has elaborated the theoretical constructs of capability approach, which, in turn, has structured insights from field to evaluate the product. Capability approach based methodology is also prescriptively used to design the mould for rapid dissemination of the Astra Ole.
Resumo:
Clock synchronization in a wireless sensor network (WSN) is quite essential as it provides a consistent and a coherent time frame for all the nodes across the network. Typically, clock synchronization is achieved by message passing using a contention-based scheme for media access, like carrier sense multiple access (CSMA). The nodes try to synchronize with each other, by sending synchronization request messages. If many nodes try to send messages simultaneously, contention-based schemes cannot efficiently avoid collisions. In such a situation, there are chances of collisions, and hence, message losses, which, in turn, affects the convergence of the synchronization algorithms. However, the number of collisions can be reduced with a frame based approach like time division multiple access (TDMA) for message passing. In this paper, we propose a design to utilize TDMA-based media access and control (MAC) protocol for the performance improvement of clock synchronization protocols. The basic idea is to use TDMA-based transmissions when the degree of synchronization improves among the sensor nodes during the execution of the clock synchronization algorithm. The design significantly reduces the collisions among the synchronization protocol messages. We have simulated the proposed protocol in Castalia network simulator. The simulation results show that the proposed protocol significantly reduces the time required for synchronization and also improves the accuracy of the synchronization algorithm.
Resumo:
Purpose - The purpose of this paper is to investigate the possibility to construct tissue-engineered bone repair scaffolds with pore size distributions using rapid prototyping techniques. Design/methodology/approach - The fabrication of porous scaffolds with complex porous architectures represents a major challenge in tissue engineering and the design aspects to mimic complex pore shape as well as spatial distribution of pore sizes of natural hard tissue remain unexplored. In this context, this work aims to evaluate the three-dimensional printing process to study its potential for scaffold fabrication as well as some innovative design of homogeneously porous or gradient porous scaffolds is described and such design has wider implication in the field of bone tissue engineering. Findings - The present work discusses biomedically relevant various design strategies with spatial/radial gradient in pore sizes as well as with different pore sizes and with different pore geometries. Originality/value - One of the important implications of the proposed novel design scheme would be the development of porous bioactive/biodegradable composites with gradient pore size, porosity, composition and with spatially distributed biochemical stimuli so that stem cells loaded into scaffolds would develop into complex tissues such as those at the bone-cartilage interface.
Resumo:
Mixing at low Reynolds number is usually due to diffusion and requires longer channel lengths for complete mixing. In order to reduce the mixing lengths, advective flow can be induced by varying the channel geometry. Additionally, in non-newtonian fluids, appropriate modifications to channel geometry can be used to aid the mixing process by capitalizing on their viscoelastic nature. Here we have exploited the advection and viscoelastic effects to implement a planar passive micro-mixer. Microfluidic devices incorporating different blend of mixing geometries were conceived. The optimum design was chosen based on the results of the numerical simulations performed in COMSOL. The chosen design had sudden expansion and contraction along with teeth patterns along the channel walls to improve mixing. Mixing of two different dyes was performed to validate the mixing efficiency. Particle dispersion experiments were also carried out. The results indicated effective mixing. In addition, the same design was also found to be compatible with electrical power free pumping mechanism like suction. The proposed design was then used to carry out on-chip chemical cell lysis with human whole blood samples to establish its use with non-newtonian fluids. Complete lysis of the erythrocytes was observed leaving behind the white blood cells at the outlet.
Resumo:
We discuss the potential application of high dc voltage sensing using thin-film transistors (TFTs) on flexible substrates. High voltage sensing has potential applications for power transmission instrumentation. For this, we consider a gate metal-substrate-semiconductor architecture for TFTs. In this architecture, the flexible substrate not only provides mechanical support but also plays the role of the gate dielectric of the TFT. Hence, the thickness of the substrate needs to be optimized for maximizing transconductance, minimizing mechanical stress, and minimizing gate leakage currents. We discuss this optimization, and develop n-type and p-type organic TFTs using polyvinyldene fluoride as the substrate-gate insulator. Circuits are also realized to achieve level shifting, amplification, and high drain voltage operation.
Resumo:
To accomplish laser-induced thermal loading simulation tests for pistons,the Gaussian beam was modulated into multi-circular beam with specific intensity distribution.A reverse method was proposed to design the intensity distribution for the laser-induced thermal loading based on finite element(FE) analysis.Firstly,the FE model is improved by alternating parameters of boundary conditions and thermal-physical properties of piston material in a reasonable range,therefore it can simulate the experimental resul...
A web-based semantic information retrieval system to support decision-making in collaborative design