946 resultados para L-arginine-NO-cGMP pathway


Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Small bistratified cells (SBCs) in the primate retina carry a major blue-yellow opponent signal to the brain. We found that SBCs also carry signals from rod photoreceptors, with the same sign as S cone input. SBCs exhibited robust responses under low scotopic conditions. Physiological and anatomical experiments indicated that this rod input arose from the AII amacrine cell-mediated rod pathway. Rod and cone signals were both present in SBCs at mesopic light levels. These findings have three implications. First, more retinal circuits may multiplex rod and cone signals than were previously thought to, efficiently exploiting the limited number of optic nerve fibers. Second, signals from AII amacrine cells may diverge to most or all of the approximately 20 retinal ganglion cell types in the peripheral primate retina. Third, rod input to SBCs may be the substrate for behavioral biases toward perception of blue at mesopic light levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mammalian target of rapamycin (MTOR) assembles into two distinct complexes: mTOR complex 1 (mTORC1) is predominantly cytoplasmic and highly responsive to rapamycin, whereas mTOR complex 2 (mTORC2) is both cytoplasmic and nuclear, and relatively resistant to rapamycin. mTORC1 and mTORC2 phosphorylatively regulate their respective downstream effectors p70S6K/4EBP1, and Akt. The resulting activated mTOR pathways stimulate protein synthesis, cellular proliferation, and cell survival. Moreover, phospholipase D (PLD) and its product, phosphatidic acid (PA) have been implicated as one of the upstream activators of mTOR signaling. In this study, we investigated the activation status as well as the subcellular distribution of mTOR, and its upstream regulators and downstream effectors in endometrial carcinomas (ECa) and non-neoplastic endometrial control tissue. Our data show that the mTORC2 activity is selectively elevated in endometrial cancers as evidenced by a predominant nuclear localization of the activated form of mTOR (p-mTOR at Ser2448) in malignant epithelium, accompanied by overexpression of nuclear p-Akt (Ser473), as well as overexpression of vascular endothelial growth factor (VEGF)-A isoform, the latter a resultant of target gene activation by mTORC2 signaling via hypoxia-inducible factor (HIF)-2alpha. In addition, expression of PLD1, one of the two major isoforms of PLD in human, is increased in tumor epithelium. In summary, we demonstrate that the PLD1/PA-mTORC2 signal pathway is overactivated in endometrial carcinomas. This suggests that the rapamycin-insensitive mTORC2 pathway plays a major role in endometrial tumorigenesis and that therapies designed to target the phospholipase D pathway and components of the mTORC2 pathway should be efficacious against ECa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glutamate is the major excitatory neurotransmitter in the retina and serves as the synaptic messenger for the three classes of neurons which constitute the vertical pathway--the photoreceptors, bipolar cells and ganglion cells. In addition, the glutamate system has been localized morphologically, pharmacologically as well as molecularly during the first postnatal week of development before synaptogenesis occurs. The role which glutamate plays in the maturing visual system is complex but ranges from mediating developmental neurotoxicity to inducing neurite outgrowth.^ Nitric oxide/cGMP is a novel intercellular messenger which is thought to act in concert with the glutamate system in regulating a variety of cellular processes in the brain as well as retina, most notably neurotoxicity. Several developmental activities including programmed cell death, synapse elimination and synaptic reorganization are possible functions of cellular regulation modulated by nitric oxide as well as glutamate.^ The purpose of this thesis is to (1) biochemically characterize the endogenous pools of glutamate and determine what fraction exists extracellularly; (2) examine the morphological expression of NO producing cells in developing retina; (3) test the functional coupling of the NMDA subtype of glutamate receptor to the NO system by examining neurotoxicity which has roles in both the maturing and adult retina.^ Biochemical sampling of perfusates collected from the photoreceptor surface of ex vivo retina demonstrated that although the total pool of glutamate present at birth is relatively modest, a high percentage resides in extracellular pools. As a result, immature neurons without significant synaptic connections survive and develop in a highly glutamatergic environment which has been shown to be toxic in the adult retina.^ The interaction of the glutamate system with the NO system has been postulated to regulate neuronal survival. We therefore examined the developmental expression of the enzyme responsible for producing NO, nitric oxide synthase (NOS), using an antibody to the constitutive form of NOS found in the brain. The neurons thought to produce the majority of NO in the adult retina, a subpopulation of widefield amacrine cells, were not immunoreactive until the end of the second postnatal week. However, a unique developmental expression was observed in the ganglion cell layer and developing outer nuclear layer of the retina during the first postnatal week. We postulate NO producing neurons may not be present in a mature configuration therefore permitting neuronal survival in a highly glutamatergic microenvironment and allowing NO to play a development-specific role at this time.^ The next set of experiments constituted a functional test of the hypothesis that the absence of the prototypic NO producing cells in developing retina protects immature neurons against glutamate toxicity. An explant culture system developed in order to examine cellular responses of immature and adult neurons to glutamate toxicity showed that immature neurons were affected by NMDA but were less responsive to NMDA and NO mediated toxicity. In contrast, adult explants exhibited significant NMDA toxicity which was attenuated by NMDA antagonists, 2-amino-5-phosphonovaleric acid (APV), dextromethorphan (Dex) and N$\rm\sp{G}$-D-methyl arginine (metARG). These results indicated that pan-retinal neurotoxicity via the NMDA receptor and/or NO activation occurred in the adult retina but was not significant in the neonate. (Abstract shortened by UMI.) ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mammalian target of rapamycin (mTOR) signaling pathway is aberrantly activated in polycystic kidney disease (PKD). Emerging evidence suggests that phospholipase D (PLD) and its product phosphatidic acid (PA) regulate mTOR activity. In this study, we assessed in vitro the regulatory function of PLD and PA on the mTOR signaling pathway in PKD. We found that the basal level of PLD activity was elevated in PKD cells. Targeting PLD by small molecule inhibitors reduced cell proliferation and blocked mTOR signaling, whereas exogenous PA stimulated mTOR signaling and abolished the inhibitory effect of PLD on PKD cell proliferation. We also show that blocking PLD activity enhanced the sensitivity of PKD cells to rapamycin and that combining PLD inhibitors and rapamycin synergistically inhibited PKD cell proliferation. Furthermore, we demonstrate that targeting mTOR did not induce autophagy, whereas targeting PLD induced autophagosome formation. Taken together, our findings suggest that deregulated mTOR pathway activation is mediated partly by increased PLD signaling in PKD cells. Targeting PLD isoforms with pharmacological inhibitors may represent a new therapeutic strategy in PKD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BackgroundBacterial meningitis (BM) is characterized by an intense host inflammatory reaction, which contributes to the development of brain damage and neuronal sequelae. Activation of the kynurenine (KYN) pathway (KP) has been reported in various neurological diseases as a consequence of inflammation. Previously, the KP was shown to be activated in animal models of BM, and the association of the SNP AADAT¿+¿401C/T (kynurenine aminotransferase II - KAT II) with the host immune response to BM has been described. The aim of this study was to investigate the involvement of the KP during BM in humans by assessing the concentrations of KYN metabolites in the cerebrospinal fluid (CSF) of BM patients and their relationship with the inflammatory response compared to aseptic meningitis (AM) and non-meningitis (NM) groups.MethodsThe concentrations of tryptophan (TRP), KYN, kynurenic acid (KYNA) and anthranilic acid (AA) were assessed by HPLC from CSF samples of patients hospitalized in the Giselda Trigueiro Hospital in Natal (Rio Grande do Norte, Brazil). The KYN/TRP ratio was used as an index of indoleamine 2,3-dioxygenase (IDO) activity, and cytokines were measured using a multiplex cytokine assay. The KYNA level was also analyzed in relation to AADAT¿+¿401C/T genotypes.ResultsIn CSF from patients with BM, elevated levels of KYN, KYNA, AA, IDO activity and cytokines were observed. The cytokines INF-¿ and IL-1Ra showed a positive correlation with IDO activity, and TNF-¿ and IL-10 were positively correlated with KYN and KYNA, respectively. Furthermore, the highest levels of KYNA were associated with the AADAT¿+¿401 C/T variant allele.ConclusionThis study suggests a downward modulatory effect of the KP on CSF inflammation during BM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Helicobacter pylori infects the human gastric mucosa causing a chronic infection that is the primary risk factor for gastric cancer development. Recent studies demonstrate that H. pylori promotes tolerogenic dendritic cell (DC) development indicating that this bacterium evades the host immune response. However, the signaling pathways involved in modulating DC activation during infection remain unclear. Here, we report that H. pylori infection activated the signal transducer and activator of transcription 3 (STAT3) pathway in murine bone marrow-derived DCs (BMDCs) and splenic DCs isolated ex vivo. Isogenic cagA-, cagE-, vacA- and urease-mutants exhibited levels of phosphoSTAT3 that were comparable to in the wild-type (WT) parent strain. H. pylori-infected BMDCs produced increased immunosuppressive IL-10, which activated STAT3 in an autocrine/paracrine fashion. Neutralization of IL-10 prevented H. pylori-mediated STAT3 activation in both BMDCs and splenic DCs. In addition, anti-IL-10 treatment of infected H. pylori-BMDCs was associated with increased CD86 and MHC II expression and enhanced proinflammatory IL-1β cytokine secretion. Finally, increased CD86 and MHC II expression was detected in H. pylori-infected STAT3 knockout DCs when compared to WT controls. Together, these results demonstrate that H. pylori infection induces IL-10 secretion in DCs, which activates STAT3, thereby modulating DC maturation and reducing IL-1β secretion. These findings identify a host molecular mechanism by which H. pylori can manipulate the innate immune response to potentially favor chronic infection and promote carcinogenesis. © 2014 S. Karger AG, Basel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quinones are ubiquitous in the environment. They occur naturally but are also in widespread use in human and industrial activities. Quinones alone are relatively benign to bacteria, but in combination with copper, they become toxic by a mechanism that leads to intracellular thiol depletion. Here, it was shown that the yahCD-yaiAB operon of Lactococcus lactis IL1403 provides resistance to combined copper/quinone stress. The operon is under the control of CopR, which also regulates expression of the copRZA copper resistance operon as well as other L. lactis genes. Expression of the yahCD-yaiAB operon is induced by copper but not by quinones. Two of the proteins encoded by the operon appear to play key roles in alleviating quinone/copper stress: YaiB is a flavoprotein that converts p-benzoquinones to less toxic hydroquinones, using reduced nicotinamide adenine dinucleotide phosphate (NADPH) as reductant; YaiA is a hydroquinone dioxygenase that converts hydroquinone putatively to 4-hydroxymuconic semialdehyde in an oxygen-consuming reaction. Hydroquinone and methylhydroquinone are both substrates of YaiA. Deletion of yaiB causes increased sensitivity of L. lactis to quinones and complete growth arrest under combined quinone and copper stress. Copper induction of the yahCD-yaiAB operon offers protection to copper/quinone toxicity and could provide a growth advantage to L. lactis in some environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although slugs and snails play important roles in terrestrial ecosystems and cause considerable damage on a variety of crop plants, knowledge about the mechanisms of plant immunity to molluscs is limited. We found slugs to be natural herbivores of Arabidopsis thaliana and therefore investigated possible resistance mechanisms of this species against several molluscan herbivores. Treating wounded leaves with the mucus residue (‘slime trail’) of the Spanish slug Arion lusitanicus increased wound-induced jasmonate levels, suggesting the presence of defence elicitors in the mucus. Plants deficient in jasmonate biosynthesis and signalling suffered more damage by molluscan herbivores in the laboratory and in the field, demonstrating that JA-mediated defences protect A. thaliana against slugs and snails. Furthermore, experiments using A. thaliana mutants with altered levels of specific glucosinolate classes revealed the importance of aliphatic glucosinolates in defending leaves and reproductive structures against molluscs. The presence in mollusc faeces of known and novel metabolites arising from glutathione conjugation with glucosinolate hydrolysis products suggests that molluscan herbivores actively detoxify glucosinolates. Higher levels of aliphatic glucosinolates were found in plants during the night compared to the day, which correlated well with the nocturnal activity rhythms of slugs and snails. Our data highlight the function of well-known antiherbivore defence pathways in resistance against slugs and snails and suggest an important role for the diurnal regulation of defence metabolites against nocturnal molluscan herbivores.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Herbivore-induced volatiles play an important role in the indirect defense of plants. After herbivore damage, volatiles are released from the plant and can attract herbivore enemies that protect the plant from additional damage. The herbivore-induced volatile blend is complex and usually consists of mono- and sesquiterpenes, aromatic compounds, and indole. Although these classes of compounds are generally produced at different times after herbivore damage, the release of the terpene (E)-β-caryophyllene and the aromatic ester methyl anthranilate appear to be tightly coordinated. We have studied the herbivore induction patterns of two terpene synthases from Zea mays L. (Poaceae), TPS23 and TPS10, as well as S-adenosyl-L-methionine:anthranilic acid carboxyl methyltransferases (AAMT1), which are critical for the production of terpenes and anthranilate compounds, respectively. The transcript levels of tps23 and aamt1 displayed the same kinetics after damage by the larvae of Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae), and showed the same organ-specific and haplotype-specific expression patterns. Despite its close functional relation to TPS23, the terpene synthase TPS10 is not expressed in roots and does not display the haplotype-specific expression pattern. The results indicate that the same JA-mediated signaling cascade maycontrol the production of both the terpene (E)-β-caryophyllene and aromatic ester methyl anthranilate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

igments, proteins and enzyme activity related to chlorophyll catabolism were analysed in senescing leaves of wild-type (WT) Lolium temulentum and compared with those of an introgression line carrying a mutant gene from stay-green (SG) Festuca pratensis. During senescence of WT leaves chlorophylls a and b were continuously catabolised to colourless products and no other derivatives were observed, whereas in SG leaves there was an accumulation of dephytylated and oxidised catabolites including chlorophyllide a, phaeophorbide a and 132 OH-chlorophyllide a. Dephytylated products were absent from SG leaf tissue senescing under a light-dark cycle. Retention of pigments in SG was accompanied by significant stabilisation of light harvesting chlorophyll-proteins compared with WT, but soluble proteins such as Rubisco were degraded during senescence at a similar rate in the two genotypes. The activity of phaeophorbide a oxygenase measured in SG tissue at 3d was less than 12% of that in WT tissue at the same time-point during senescence and of the same order as that in young pre-senescent WT leaves, indicating that the metabolic lesion in SG concerns a deficiency at the ring-opening step of the catabolic pathway. In senescent L. temulentum tissue two terminal chlorophyll catabolites were identified with chromatographic characteristics that suggest they may represent hitherto undescribed catabolite structures. These data are discussed in relation to current understanding of the genetic and metabolic control of chlorophyll catabolism in leaf senescence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

4-Aryl-1,1,1-trifluorobut-3-en-2-ones ArCH[double bond, length as m-dash]CHCOCF3 (CF3-enones) react with arenes in excess of Brønsted superacids (TfOH, FSO3H) to give, stereoselectively, trans-1,3-diaryl-1-trifluoromethyl indanes in 35-85% yields. The reaction intermediates, the O-protonated ArCH[double bond, length as m-dash]CHC(OH(+))CF3 and the O,C-diprotonated ArHC(+)CH2C(OH(+))CF3 species, have been studied by means of (1)H, (13)C, (19)F NMR, and DFT calculations. Both types of the cations may participate in the reaction, depending on their electrophilicity and electron-donating properties of the arenes. The formation of CF3-indanes is a result of cascade reaction of protonated CF3-enones to form chemo-, regio- and stereoselectively three new C-C bonds. The obtained trans-1,3-diaryl-1-trifluoromethyl indanes were investigated as potential ligands for cannabinoid receptors CB1 and CB2 types. The most potent compound showed sub-micromolar affinity for both receptor subtypes with a 6-fold selectivity toward the CB2 receptor with no appreciable cytotoxicity toward SHSY5Y cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mannan-binding lectin-associated serine protease-1 (MASP-1), a protein of the complement lectin pathway, resembles thrombin in terms of structural features and substrate specificity. Due to its interplay with several coagulation factors, it has the ability to induce fibrin clot formation independent of the usual coagulation activation pathways. We have recently shown that MASP-1 activates prothrombin and identified arginine (R) 155, R271, and R393 as potential cleavage sites. FXa cleaves R320 instead of R393, and thrombin cleaves R155 and R284 in prothrombin. Here we have used three arginine-to-glutamine mutants of prothrombin, R271Q, R320Q, R393Q and the serine-to-alanine active site mutant S525A to investigate in detail the mechanism of MASP-1 mediated prothrombin activation. Prothrombin wildtype and mutants were digested with MASP-1 and the cleavage products were analysed by SDS-PAGE and N-terminal sequencing. A functional clotting assay was performed by thrombelastography. We have found that MASP-1 activates prothrombin via two simultaneous pathways, either cleaving at R271 or R393 first. Both pathways result in the formation of several active alternative thrombin species. Functional studies confirmed that both R393 and R320 are required for prothrombin activation by MASP-1, whereas R155 is not considered to be an important cleavage site in this process. In conclusion, we have described for the first time a detailed model of prothrombin activation by MASP-1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The serine protease inhibitor N-alpha-tosyl-L-phenylalanine chloromethyl ketone (TPCK) can interfere with cell-cycle progression and has also been shown either to protect cells from apoptosis or to induce apoptosis. We tested the effect of TPCK on two transformed T-cell lines. Both Jurkat T-cells and Theileria parva-transformed T-cells were shown to be highly sensitive to TPCK-induced growth arrest and apoptosis. Surprisingly, we found that the thiol antioxidant, N-acetylcysteine (NAC), as well as L- or D-cysteine blocked TPCK-induced growth arrest and apoptosis. TPCK inhibited constitutive NF-kappaB activation in T. parva-transformed T-cells, with phosphorylation of IkappaBalpha and IkappaBbeta being inhibited with different kinetics. TPCK-mediated inhibition of IkappaB phosphorylation, NF-kappaB DNA binding and transcriptional activity were also prevented by NAC or cysteine. Our observations indicate that apoptosis and NF-kappaB inhibition induced by TPCK result from modifications of sulphydryl groups on proteins involved in regulating cell survival and the NF-kappaB activation pathway(s).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nuclear factor-kappaB regulates genes that control immune and inflammatory responses and are involved in the pathogenesis of several diseases, including AIDS and cancer. It has been proposed that reactive oxygen intermediates participate in NF-kappaB activation pathways, and compounds with putative antioxidant activity such as N-acetyl-L-cysteine (NAC) and pyrrolidine dithiocarbamate (PDTC) have been used interchangeably to demonstrate this point. We examined their effects, separately and combined, on different stages of the NF-kappaB activation pathway, in primary and in transformed T cells. We show that NAC, contrary to its reported role as an NF-kappaB inhibitor, can actually enhance rather than inhibit IkappaB degradation and, most importantly, show that in all cases NAC exerts a dominant antagonistic effect on PDTC-mediated NF-kappaB inhibition. This was observed at the level of IkappaB degradation, NF-kappaB DNA binding, and HIV-LTR-driven reporter gene expression. NAC also counteracted growth arrest and apoptosis induced by dithiocarbamates. Antagonistic effects were further observed at the level of jun-NH2-terminal kinase, p38 and ATF-2 activation. Our findings argue against the widely accepted assumption that NAC inhibits all NF-kappaB activation pathways and shows that two compounds, previously thought to function through a common inhibitory mechanism, can also have antagonistic effects.