948 resultados para Kinetic enzymatic assays
Resumo:
The results of an experimental study into the oxidative degradation of proxies for atmospheric aerosol are presented. We demonstrate that the laser Raman tweezers method can be used successfully to obtain uptake coeffcients for gaseous oxidants on individual aqueous and organic droplets, whilst the size and composition of the droplets is simultaneously followed. A laser tweezers system was used to trap individual droplets containing an unsaturated organic compound in either an aqueous or organic ( alkane) solvent. The droplet was exposed to gas- phase ozone and the reaction kinetics and products followed using Raman spectroscopy. The reactions of three different organic compounds with ozone were studied: fumarate anions, benzoate anions and alpha pinene. The fumarate and benzoate anions in aqueous solution were used to represent components of humic- like substances, HULIS; a alpha- pinene in an alkane solvent was studied as a proxy for biogenic aerosol. The kinetic analysis shows that for these systems the diffusive transport and mass accommodation of ozone is relatively fast, and that liquid- phase di. ffusion and reaction are the rate determining steps. Uptake coe. ffcients, g, were found to be ( 1.1 +/- 0.7) x 10(-5), ( 1.5 +/- 0.7) x 10 (-5) and ( 3.0 - 7.5) x 10 (-3) for the reactions of ozone with the fumarate, benzoate and a- pinene containing droplets, respectively. Liquid- phase bimolecular rate coe. cients for reactions of dissolved ozone molecules with fumarate, benzoate and a- pinene were also obtained: k(fumarate) = ( 2.7 +/- 2) x 10 (5), k(benzoate) = ( 3.5 +/- 3) x 10 (5) and k(alpha-pinene) = ( 1-3) x 10(7) dm(3) mol (-1) s (- 1). The droplet size was found to remain stable over the course of the oxidation process for the HULIS- proxies and for the oxidation of a- pinene in pentadecane. The study of the alpha- pinene/ ozone system is the first using organic seed particles to show that the hygroscopicity of the particle does not increase dramatically over the course of the oxidation. No products were detected by Raman spectroscopy for the reaction of benzoate ions with ozone. One product peak, consistent with aqueous carbonate anions, was observed when following the oxidation of fumarate ions by ozone. Product peaks observed in the reaction of ozone with alpha- pinene suggest the formation of new species containing carbonyl groups.
Resumo:
Two cobalt complexes, [Co(L-Se)(phen)]center dot CH2Cl2 (1) and [Co(L-Se)(N,N-Me(2)en)(CH3COO-)] (2) have been synthesized and characterized by elemental analyses, magnetic measurements, i.r. studies etc. Single crystal X- ray studies reveal that in complex (1) cobalt atom is in +2 oxidation state with trigonal bipyramidal geometry, while in complex (2) it is in +3 oxidation state and surrounded octahedrally. The asymmetric unit of complex (2) contains two crystallographically independent discrete molecules. Complex (1) was found to be paramagnetic with mu(eff) = 2.19 BM indicating a low spin cobalt(II) d(7) system, whereas complex (2) is found to be diamagnetic with cobalt(III) in low spin d(6) state. The kinetic studies on the reduction of (2) by ascorbic acid in 80% MeCN-20% H2O (v/v) at 25 degrees C reveal that the reaction proceeds through the rapid formation of inner-sphere adduct, probably by replacing the loosely coordinated AcO- group, followed by electron transfer in a slow step and is supported by a large Q (formation constant) value.
Resumo:
Reports that heat processing of foods induces the formation of acrylamide heightened interest in the chemistry, biochemistry, and safety of this compound. Acrylamide-induced neurotoxicity, reproductive toxicity, genotoxicity, and carcinogenicity are potential human health risks based on animal studies. Because exposure of humans to acrylamide can come from both external sources and the diet, there exists a need to develop a better understanding of its formation and distribution in food and its role in human health. To contribute to this effort, experts from eight countries have presented data on the chemistry, analysis, metabolism, pharmacology, and toxicology of acrylamide. Specifically covered are the following aspects: exposure from the environment and the diet; biomarkers of exposure; risk assessment; epidemiology; mechanism of formation in food; biological alkylation of amino acids, peptides, proteins, and DNA by acrylamide and its epoxide metabolite glycidamide; neurotoxicity, reproductive toxicity, and carcinogenicity; protection against adverse effects; and possible approaches to reducing levels in food. Cross-fertilization of ideas among several disciplines in which an interest in acrylamide has developed, including food science, pharmacology, toxicology, and medicine, will provide a better understanding of the chemistry and biology of acrylamide in food, and can lead to the development of food processes to decrease the acrylamide content of the diet.
Resumo:
Background and aims: Epidemiological evidence indicates that cereal dietary fibre (DF) may have several cardiovascular health benefits. The underlying mechanisms have not yet been elucidated. Here, the potential nutritional effects of physico-chemical. properties modifications of durum wheat dietary fibre (DWF) induced by enzyme treatment have been investigated. Methods and results: The conversion of the highly polymerised insoluble dietary fibre into soluble feruloyl oligosaccharides of DWF was achieved by a tailored enzymatic treatment. The in vitro fermentation and release of ferulic acid by intestinal microbiota from DWF before and after the enzymatic treatment were assessed using a gut model validated to mimic the human colonic microbial environment. Results demonstrated that, compared to DWF, the enzyme-treated DWF (ETD-WF) stimulated the growth of bifidobacteria and lactobacilli. Concurrently, the release of free ferulic acid by ET-DWF was almost three times higher respect to the control. No effect on the formation of short chain fatty acids was observed. Conclusions: The conversion of insoluble dietary fibre from cereals into soluble dietary fibre generated a gut microbial fermentation that supported bifidobacteria and lactobacilli. The concurrent increase in free ferulic acid from the enzyme-treated DWF might result in a higher plasma ferulic acid concentration which could be one of the reasons for the health benefits reported for dietary fibre in cardiovascular diseases. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Background: Galactooligosaccharides are selectively fermented by the beneficial member of the colonic microflora contributing to the health of the host. Objective: We assessed the prebiotic potential of a novel galactooligosaccharide produced through the action of beta-galactosidases, originating from a probiotic Bifidobacterium bifidum strain, against a galactooligosaccharide produced through the action of an industrial P-galactosidase and a placebo. Design: Fifty-nine healthy human volunteers participated in this study. Initially, the effect of the matrix on the prebiotic properties of a commercially available galactooligosaccharide (7 g/d) was assessed during 7-d treatment periods with a 7-d washout period in between. During the second phase, 30 volunteers were assigned to a sequence of treatments (7 d) differing in the amount of the novel galactooligosaccharide (0, 3.6, or 7 g/d). Stools were recovered before and after each intervention, and bacteria numbers were determined by fluorescent in situ hybridization. Results: Addition of the novel galactooligosaccharide mixture significantly increased the bifidobacterial population ratio compared with the placebo (P < 0.05), whereas 7 g/d of the novel galactooligosaccharide significantly increased the bifidobacterial ratio compared with the commercial galactooligosaccharide (P < 0.05). Moreover, a significant relation (P < 0.001) between the bifidobacteria proportion and the novel galactooligosaccharide dose (0, 3.6, and 7 g/d) was observed. This relation was similar to the effect of the novel galactooligosaccharide on the prebiotic index of each dose. Conclusions: This study showed that galactooligosaccharide mixtures produced with different beta-galactosidases show different prebiotic properties and that, by using enzymes originating from bifidobacterial species, an increase in the bifidogenic properties of the prebiotic product is achievable.
Resumo:
Quantitative control of aroma generation during the Maillard reaction presents great scientific and industrial interest. Although there have been many studies conducted in simplified model systems, the results are difficult to apply to complex food systems, where the presence of other components can have a significant impact. In this work, an aqueous extract of defatted beef liver was chosen as a simplified food matrix for studying the kinetics of the Mallard reaction. Aliquots of the extract were heated under different time and temperature conditions and analyzed for sugars, amino acids, and methylbutanals, which are important Maillard-derived aroma compounds formed in cooked meat. Multiresponse kinetic modeling, based on a simplified mechanistic pathway, gave a good fit with the experimental data, but only when additional steps were introduced to take into account the interactions of glucose and glucose-derived intermediates with protein and other amino compounds. This emphasizes the significant role of the food matrix in controlling the Maillard reaction.
Resumo:
Background and purpose: Low efficacy partial agonists at the D-2 dopamine receptor may be useful for treating schizophrenia. In this report we describe a method for assessing the efficacy of these compounds based on stimulation of [S-35]GTP gamma S binding. Experimental approach: Agonist efficacy was assessed from [S-35]GTP gamma S binding to membranes of CHO cells expressing D2 dopamine receptors in buffers with and without Na+. Effects of Na+ on receptor/G protein coupling were assessed using agonist/[H-3] spiperone competition binding assays. Key results: When [S-35]GTP gamma S binding assays were performed in buffers containing Na+, some agonists (aripiprazole, AJ-76, UH-232) exhibited very low efficacy whereas other agonists exhibited measurable efficacy. When Na+ was substituted by N-methyl D-glucamine, the efficacy of all agonists increased (relative to that of dopamine) but particularly for aripiprazole, aplindore, AJ-76, (-)-3-PPP and UH-232. In ligand binding assays, substitution of Na+ by N-methyl D-glucamine increased receptor/G protein coupling for some agonists -. aplindore, dopamine and (-)-3-PPP-but for aripiprazole, AJ-76 and UH-232 there was little effect on receptor/G protein coupling. Conclusions and implications: Substitution of Na+ by NMDG increases sensitivity in [S-35] GTPgS binding assays so that very low efficacy agonists were detected clearly. For some agonists the effect seems to be mediated via enhanced receptor/G protein coupling whereas for others the effect is mediated at another point in the G protein activation cycle. AJ-76, aripiprazole and UH-232 seem particularly sensitive to this change in assay conditions. This work provides a new method to discover these very low efficacy agonists.
Resumo:
A method of estimating dissipation rates from a vertically pointing Doppler lidar with high temporal and spatial resolution has been evaluated by comparison with independent measurements derived from a balloon-borne sonic anemometer. This method utilizes the variance of the mean Doppler velocity from a number of sequential samples and requires an estimate of the horizontal wind speed. The noise contribution to the variance can be estimated from the observed signal-to-noise ratio and removed where appropriate. The relative size of the noise variance to the observed variance provides a measure of the confidence in the retrieval. Comparison with in situ dissipation rates derived from the balloon-borne sonic anemometer reveal that this particular Doppler lidar is capable of retrieving dissipation rates over a range of at least three orders of magnitude. This method is most suitable for retrieval of dissipation rates within the convective well-mixed boundary layer where the scales of motion that the Doppler lidar probes remain well within the inertial subrange. Caution must be applied when estimating dissipation rates in more quiescent conditions. For the particular Doppler lidar described here, the selection of suitably short integration times will permit this method to be applicable in such situations but at the expense of accuracy in the Doppler velocity estimates. The two case studies presented here suggest that, with profiles every 4 s, reliable estimates of ϵ can be derived to within at least an order of magnitude throughout almost all of the lowest 2 km and, in the convective boundary layer, to within 50%. Increasing the integration time for individual profiles to 30 s can improve the accuracy substantially but potentially confines retrievals to within the convective boundary layer. Therefore, optimization of certain instrument parameters may be required for specific implementations.
Resumo:
A discharge-flow system, coupled to cavity-enhanced absorption spectroscopy (CEAS) detection systems for NO3 at lambda = 662 nm and NO2 at lambda = 404 nm, was used to investigate the kinetics of the reactions of NO3 with eight peroxy radicals at P similar to 5 Torr and T similar to 295 K. Values of the rate constants obtained were (k/10(-12) cm(3) molecule(-1) s(-1)): CH3O2 (1.1 +/- 0.5), C2H5O2 (2.3 +/- 0.7), CH2FO2 (1.4 +/- 0.9), CH2ClO2 (3.8(-2.6)(+1.4)), c-C5H9O2 (1.2(-0.5)(+1.1)), c-C6H11O2 (1.9 +/- 0.7), CF3O2 (0.62 +/- 0.17) and CF3CFO2CF3 (0.24 +/- 0.13). We explore possible relationships between k and the orbital energies of the reactants. We also provide a brief discussion of the potential impact of the reactions of NO3 with RO2 on the chemistry of the night-time atmosphere.
Resumo:
We present a kinetic double layer model coupling aerosol surface and bulk chemistry (K2-SUB) based on the PRA framework of gas-particle interactions (Poschl-Rudich-Ammann, 2007). K2-SUB is applied to a popular model system of atmospheric heterogeneous chemistry: the interaction of ozone with oleic acid. We show that our modelling approach allows de-convoluting surface and bulk processes, which has been a controversial topic and remains an important challenge for the understanding and description of atmospheric aerosol transformation. In particular, we demonstrate how a detailed treatment of adsorption and reaction at the surface can be coupled to a description of bulk reaction and transport that is consistent with traditional resistor model formulations. From literature data we have derived a consistent set of kinetic parameters that characterise mass transport and chemical reaction of ozone at the surface and in the bulk of oleic acid droplets. Due to the wide range of rate coefficients reported from different experimental studies, the exact proportions between surface and bulk reaction rates remain uncertain. Nevertheless, the model results suggest an important role of chemical reaction in the bulk and an approximate upper limit of similar to 10(-11) cm(2) s(-1) for the surface reaction rate coefficient. Sensitivity studies show that the surface accommodation coefficient of the gas-phase reactant has a strong non-linear influence on both surface and bulk chemical reactions. We suggest that K2-SUB may be used to design, interpret and analyse future experiments for better discrimination between surface and bulk processes in the oleic acid-ozone system as well as in other heterogeneous reaction systems of atmospheric relevance.
Resumo:
Rate constants for bimolecular reactions, obtained through time-resolved kinetic studies both in the gas and liquid phases are reviewed. Data for reactions of MeSiH, PhSiH, ClSiH, SiCl2, SiMe2, MeSiPh, SiPh2 and SiMes(2) are covered. Where possible, substituent effects relative to SiH2 have been obtained. These demonstrate widely varying effects between different types of reaction, which aids mechanistic understanding. Reactivities are high for all silylenes, but substituents can reduce them by both electronic and steric effects. The gas and liquid phase data (mainly for SiMe2) are compared and appear to be reasonably consistent. This review, although detailed, is not comprehensive.
Resumo:
Time-resolved studies of germylene, GeH2, generated by laser. ash photolysis of 3,4-dimethyl-1-germacyclopent-3-ene, have been carried out to obtain rate coefficients for its bimolecular reaction with C2D2. The reaction was studied in the gas phase, mainly at a total pressure of 1.3 kPa (in SF6 bath gas) at five temperatures in the range 298-558 K. Pressure variation measurements over the range 0.13-13 kPa ( SF6) at 298, 397 and 558 K revealed a small pressure dependence but only at 558 K. After correction for this, the second-order rate coefficients gave the Arrhenius equation: log(k(infinity)/cm(3) molecule(-1) s(-1)) = (-10.96 +/- 0.05) + ( 6.16 +/- 0.37 kJ mol(-1))/RT ln 10 Comparison with the reaction of GeH2 + C2H2 (studied earlier) showed a similar behaviour with almost identical rate coefficients. The lack of a significant isotope effect is consistent with a rate-determining addition process and is explained by irreversible decomposition of the reaction intermediate to give Ge(P-3) + C2H4. This result contrasts with that for GeH2 + C2H4/C2D4 and those for the analogous silylene reactions. The underlying reasons for this are discussed.
Resumo:
Time-resolved kinetic studies of silylene, SiH2, generated by laser flash photolysis of phenylsilane, have been carried out to obtain rate constants for its bimolecular reactions with oxirane, oxetane, and tetrahydrofuran (THF). The reactions were studied in the gas phase over the pressure range 1-100 Torr in SF6 bath gas, at four or five temperatures in the range 294-605 K. All three reactions showed pressure dependences characteristic of third-body-assisted association reactions with, surprisingly, SiH2 + oxirane showing the least and SiH2 + THF showing the most pressure dependence. The second-order rate constants obtained by extrapolation to the high-pressure limits at each temperature fitted the Arrhenius equations where the error limits are single standard deviations: log(k(oxirane)(infinity)/cm(3) molecule(-1) s(-1)) = (-11.03 +/- 0.07) + (5.70 +/- 0.51) kJ mol(-1)/RT In 10 log(k(oxetane)(infinity)/cm(3) molecule(-1) s(-1)) = (-11.17 +/- 0.11) + (9.04 +/- 0.78) kJ mol(-1)/RT In 10 log(k(THF)(infinity)/cm(3) molecule(-1) s(-1)) = (-10.59 +/- 0.10) + (5.76 +/- 0.65) kJ mol(-1)/RT In 10 Binding-energy values of 77, 97, and 92 kJ mol(-1) have been obtained for the donor-acceptor complexes of SiH2 with oxirane, oxetane, and THF, respectively, by means of quantum chemical (ab initio) calculations carried Out at the G3 level. The use of these values to model the pressure dependences of these reactions, via RRKM theory, provided a good fit only in the case of SiH2 + THF. The lack of fit in the other two cases is attributed to further reaction pathways for the association complexes of SiH2 with oxirane and oxetane. The finding of ethene as a product of the SiH2 + oxirane reaction supports a pathway leading to H2Si=O + C2H4 predicted by the theoretical calculations of Apeloig and Sklenak.
Resumo:
Atmosphere–ocean general circulation models (AOGCMs) predict a weakening of the Atlantic meridional overturning circulation (AMOC) in response to anthropogenic forcing of climate, but there is a large model uncertainty in the magnitude of the predicted change. The weakening of the AMOC is generally understood to be the result of increased buoyancy input to the north Atlantic in a warmer climate, leading to reduced convection and deep water formation. Consistent with this idea, model analyses have shown empirical relationships between the AMOC and the meridional density gradient, but this link is not direct because the large-scale ocean circulation is essentially geostrophic, making currents and pressure gradients orthogonal. Analysis of the budget of kinetic energy (KE) instead of momentum has the advantage of excluding the dominant geostrophic balance. Diagnosis of the KE balance of the HadCM3 AOGCM and its low-resolution version FAMOUS shows that KE is supplied to the ocean by the wind and dissipated by viscous forces in the global mean of the steady-state control climate, and the circulation does work against the pressure-gradient force, mainly in the Southern Ocean. In the Atlantic Ocean, however, the pressure-gradient force does work on the circulation, especially in the high-latitude regions of deep water formation. During CO2-forced climate change, we demonstrate a very good temporal correlation between the AMOC strength and the rate of KE generation by the pressure-gradient force in 50–70°N of the Atlantic Ocean in each of nine contemporary AOGCMs, supporting a buoyancy-driven interpretation of AMOC changes. To account for this, we describe a conceptual model, which offers an explanation of why AOGCMs with stronger overturning in the control climate tend to have a larger weakening under CO2 increase.
Resumo:
The night-time tropospheric chemistry of two stress-induced volatile organic compounds (VOCs), (Z)-pent-2-en-1-ol and pent-1-en-3-ol, has been studied at room temperature. Rate coefficients for reactions of the nitrate radical (NO3) with these pentenols were measured using the discharge-flow technique. Because of the relatively low volatility of these compounds, we employed off-axis continuous-wave cavity-enhanced absorption spectroscopy for detection of NO3 in order to be able to work in pseudo first-order conditions with the pentenols in large excess over NO3. The rate coefficients were determined to be (1.53 +/- 0.23) x 10(-13) and (1.39 +/- 0.19) x 10(-14) cm(3) molecule(-1) s(-1) for reactions of NO3 with (Z)-pent-2-en-1-ol and pent-1-en-3-ol. An attempt to study the kinetics of these reactions with a relative-rate technique, using N2O5 as source of NO3 resulted in significantly higher apparent rate coefficients. Performing relative-rate experiments in known excesses of NO2 allowed us to determine the rate coefficients for the N2O5 reactions to be (5.0 +/- 2.8) x 10(-19) cm(3) molecule(-1) s(-1) for (Z)-pent-2-en-1-ol, and (9.1 +/- 5.8) x 10(-19) cm(3) molecule(-1) s(-1) for pent-1-en-3-ol. We show that these relatively slow reactions can indeed interfere with rate determinations in conventional relative-rate experiments.