996 resultados para Kathleen Ellis
Resumo:
The Knowledge Exchange, Spatial Analysis and Healthy Urban Environments (KESUE) project has extended work previously undertaken by a QUB team of inter-disciplinary researchers engaged with the Physical Activity in the Regeneration of Connswater (PARC) project (Tully et al, 2013). The PARC project focussed on parts of East Belfast to assess the health impact of the Connswater Community Greenway. The KESUE project has aimed to extend some of the tools used initially in East Belfast so that they have data coverage of all of Belfast and Derry-Londonderry. The purpose of this has been to enable the development of evidence and policy tools that link features of the built environment with physical activity in these two cities. The project has used this data to help shape policy decisions in areas such as physical activity, park management, public transport and planning.
Working with a range of local partners who part-funded the project (City Councils in Belfast and Derry-Londonderry, Public Health Agency, Belfast Healthy Cities and Department of Regional Development), this project has mapped all the footpaths in the two cities (covering 37% of the NI population) and employed this to develop evidence used in strategies related to healthy urban planning. Using Geographic Information Systems (GIS), the footpath network has been used as a basis for a wide range of policy-relevant analyses including pedestrian accessibility to public facilities, site options for new infrastructure and assessing how vulnerable groups can access services such as pharmacies. Key outputs have been Accessibility Atlases and maps showing how walkability of the built environment varies across the two cities.
In addition to generating this useful data, the project included intense engagement with potential users of the research, which has led to its continued uptake in a number of policies and strategies, creating a virtuous circle of research, implementation and feedback. The project has proved so valuable to Belfast City Council that they have now taken on one of the researchers to continue the work in-house.
Resumo:
Purpose of review
Molecular markers for bladder cancer recurrence and
progression continue to drive many research programmes.
Translating the laboratory findings into the clinical environment
where these markers are used in clinical decision making has
proved problematic. In the clinical arena, stage and grade are
still the main focus for decisions about patient management.
There is however an evolution in bladder cancer research from
single-marker/single-pathway research to a more global
assessment of the tumour cell with DNA microarrays and
proteomics.
Recent findings
In the last year, DNA microarray assessment has revealed
several interesting molecular markers such as p33ING1 and
DEK. Parallel ‘conventional’ single-pathway research has
focused on new novel markers such as HER2/neu, survivin and
matrix metalloproteinase 2 (MMP-2). Molecular markers that
have a long-standing association with bladder cancer
progression such as p53, E-cadherin and Ki-67 have been
reviewed by both single-marker studies and by microarray
studies and their status remains important.
Summary
It is an exciting time in the molecular biology research of bladder
cancer as the focus changes to assess the global genetic and
protein expression within tumour cells. From such a wealth of
information it is likely that molecular markers will make the
translation from benchside to bedside.
Resumo:
The effect of increasing concentrations (65, 130, 325, 1,300, and 3,250 μg/g soil dry weight) of 1,2-dichlorobenzene (1,2-DCB) on the microbial biomass, metabolic potential, and diversity of culturable bacteria was investigated using soil microcosms. All doses caused a significant (p < 0.05) decrease in viable hyphal fungal length. Bacteria were more tolerant, only direct total counts in soils exposed to 3,250 μg/g were significantly (p < 0.05) lower than untreated controls, and estimates of culturable bacteria showed no response. Pseudomonads counts were stimulated by 1,2-DCB concentrations of up to 325 μg/g; above this level counts were similar to controls. Fatty acid methyl ester analysis of taxonomic bacterial composition reflected the differential response of specific genera to increasing 1,2-DCB concentrations, especially the tolerance of Bacillus to the highest concentrations. The shifts in community composition were reflected in estimates of metabolic potential assessed by carbon assimilation (Biolog) ability. Significantly fewer (p < 0.05) carbon sources were utilized by communities exposed to 1,2-DCB concentrations greater than 130 μg/g (<64 carbon sources utilized) than control soils (83); the ability to assimilate individual carbohydrates sources was especially compromised. The results of this study demonstrate that community diversity and metabolic potential can be used as effective bioindicators of pollution stress and concentration effects.
Response of soil microbial biomass to 1,2-dichlorobenzene addition in the presence of plant residues
Resumo:
The impact of 1,2-dichlorobenzene on soil microbial biomass in the presence and absence of fresh plant residues (roots) was investigated by assaying total vital bacterial counts, vital fungel hyphal length, total culturable bacterial counts, and culturable fluorescent pseudomonads. Diversity of the fluorescent pseudomonads was investigated using fatty acid methyl ester (FAME) characterization in conjunction with metabolic profiling of the sampled culturable community (Biolog). Mineralization of [14C]1,2- dichlorobenzene was also assayed. Addition of fresh roots stimulated 1,2- dichlorobenzene mineralization by over 100%, with nearly 20% of the label mineralized in root-amended treatments by the termination of the experiment. Presence of roots also buffered any impacts of 1,2-dichlorobenzene on microbial numbers. In the absence of roots, 1,2-dichlorobenzene greatly stimulated total culturable bacteria and culturable pseudomonads in a concentration-dependent manner. 1,2-Dichlorobenzene, up to concentrations of 50 μg/g soil dry weight had little or no deleterious effects on microbial counts. The phenotypic diversity of the fluorescent pseudomonad population was unaffected by the treatments, even though fluorescent pseudomonad numbers were greatly stimulated by both roots and 1,2-dichlorobenzene. The presence of roots had no detectable impact on the bacterial community composition. No phenotypic shifts in the natural population were required to benefit from the presence of roots and 1,2-dichlorobenzene. The metabolic capacity of the culturable bacterial community was altered in the presence of roots but not in the presence of 1,2-dichlorobenzene. It is argued that the increased microbial biomass and shifts in metabolic capacity of the microbial biomass are responsible for enhanced degradation of 1,2-dichlorobenzene in the presence of decaying plant roots.
Resumo:
The effect of 100 μg 1,2-dichlorobenzene (1,2-DCB) g-1 dry weight (dw) of soil introduced either as a single dose or multiple (10 fortnightly) doses of 10 μg g-1 dw, on the microbial biomass, diversity of culturable bacterial community and the rate of 1,2-DCB mineralisation, were compared. After 22 weeks exposure both application regimes significantly reduced total bacterial counts and viable fungal hyphal length. The single dose had the greatest overall inhibitory effect, although the extent of inhibition varied throughout the study. Total culturable bacterial counts, determined after 22 weeks exposure showed little response to 1,2-DCB, but pseudomonad counts in single and multiple treatments were reduced to 9.7 and 0.147%, respectively, of the numbers detected in the control soil. The effect of 1,2-DCB application on the taxonomic composition of the culturable bacteria community was determined by fatty acid methyl ester (FAME) analysis. Compared to control soils, the single dose treatment had a lower percentage of Arthrobacter and Micrococcus. Multiple applications had a significant effect upon pseudomonad abundance, which represented only 2% of the identified community, compared to 45.6% in the control. The multi-dosed soils contained a high percentage of bacilli (> 25%). The effects of 1,2-DCB applications on the metabolic potential of the soil microbial community was determined by BIOLOG profiling. The number of carbon compounds utilised by the community in the multi-dosed soils (49 positives) was significantly less (P < 0.05) than detected in the single dose treatment (76) and control (66). The rate of 1,2-DCB mineralisation, determined by 14CO2 production from radiolabelled [UL-14C] 1,2-DCB, declined throughout the study, and after 22 weeks was slightly but significantly (P < 0.05) lower in the multiply- than the singly-dosed soils. The differential response to 1,2-DCB treatments was attributed to its reduced bioavailability in soils after a single exposure, compared to multiple applications.
Resumo:
OBJECTIVE: Despite rapid declines over the last two decades, coronary heart disease (CHD) mortality rates in the British Isles are still amongst the highest in Europe. This study uses a modelling approach to compare the potential impact of future risk factor scenarios relating to smoking and physical activity levels, dietary salt and saturated fat intakes on future CHD mortality in three countries: Northern Ireland (NI), Republic of Ireland (RoI) and Scotland.
METHODS: CHD mortality models previously developed and validated in each country were extended to predict potential reductions in CHD mortality from 2010 (baseline year) to 2030. Risk factor trends data from recent surveys at baseline were used to model alternative future risk factor scenarios: Absolute decreases in (i) smoking prevalence and (ii) physical inactivity rates of up to 15% by 2030; relative decreases in (iii) dietary salt intake of up to 30% by 2030 and (iv) dietary saturated fat of up to 6% by 2030. Probabilistic sensitivity analyses were then conducted.
RESULTS: Projected populations in 2030 were 1.3, 3.4 and 3.9 million in NI, RoI and Scotland respectively (adults aged 25-84). In 2030: assuming recent declining mortality trends continue: 15% absolute reductions in smoking could decrease CHD deaths by 5.8-7.2%. 15% absolute reductions in physical inactivity levels could decrease CHD deaths by 3.1-3.6%. Relative reductions in salt intake of 30% could decrease CHD deaths by 5.2-5.6% and a 6% reduction in saturated fat intake might decrease CHD deaths by some 7.8-9.0%. These projections remained stable under a wide range of sensitivity analyses.
CONCLUSIONS: Feasible reductions in four cardiovascular risk factors (already achieved elsewhere) could substantially reduce future coronary deaths. More aggressive polices are therefore needed in the British Isles to control tobacco, promote healthy food and increase physical activity.
Resumo:
This paper looks at the Community Involvement provisions set out in the Planning Bill. It is one of four papers prepared for the Bill, which follow a common format that highlights: the key issues arising in the Bill; summarises the findings of the public consultation and the Government’s response; reviews comparable arrangements in comparable jurisdictions and highlights potential contentious issues that arise.
Resumo:
This paper examines issues of capacity, delivery and quality in relation to the Planning Bill. It is one of four papers and follows a common format highlighting the key issues arising in the Bill; summarising the findings of the public consultation and the Government’s response; reviewing comparable arrangements in comparable jurisdictions and highlighting potential contentious issues.