956 resultados para Johan Maurits, Prince of Nassau-Siegen, 1604-1679.
Resumo:
The substituted tris(bipyridine)ruthenium(II) complexes {[Ru(bpy)(2)(4,4'-bbob)](2+) and [Ru(bpy)(2)(5,5'-bbob)](2+) [where bpy = 2,2'-bipyridine and bbob = bis(benzoxazol-2-yl)-2,2'-bipyridine] have been prepared and compared to the previously studied complex [Ru(bpy)(2)(4,4'-bbtb)](2+) [where bbtb = bis(benzothiazol-2-yl)-2,2'-bipyridine]. From the UV/VIS titration studies, Delta-[Ru(bpy)(2)(4,4'bbob)](2+) displays a stronger association than the Lambda-isomer with calf-thymus DNA (ct-DNA). For [Ru(bpy)(2)(5,5'-bbob)](2+), there appears to be minimal interaction with ct-DNA. The results of fluorescence titration studies suggest that [Ru(bpy)(2)(4,4'-bbob)](2+) gives an increase in emission intensity with increasing ct-DNA concentrations, with an enantiopreference for the A isomer, confirmed by membrane dialysis studies. The fluorescent intercalation displacement studies revealed that [Ru(bpy)(2)(4,4'-bbob)](2+) and [Ru.(bpy)(2)(5,5'bbob)](2+) display a preference for more open DNA structures such as bulge and hairpin sequences. While Delta-[Ru(bpy)(2)(4,4'-bbtb)](2+) has shown the most significant affinity for all the oligonucleotides sequences screened in previous studies, it is the A isomer of the comparable benzoxazole ruthenium(II) complex (Delta-[Ru(bpy)(2)(4,4'-bbob)](2+)) that preferentially binds to DNA.
Resumo:
Tris-chelate 5-hydroxymethyl-2,2 '-bipyridine complexes of ruthenium (II) and the structurally related benzo- and naphthoesters have been isolated. The mer-isomer of the alcohol functionalised complex has been isolated by selective precipitation from methylene chloride and was subsequently functionalised to the benzoester with retention of the geometrical isomerism. The fac- and merisomeric forms of the ester complexes were separated using preparative plate silica chromatography and characterised by H-1 NMR spectroscopy. X-ray structural analysis of the fac-isomer of both the ester complexes confirmed the product assignment. The photophysical properties of the three isomers were investigated, indicating very similar absorption spectra to [Ru(biPY)(3)](2+). The emission wavelength was comparable in each case, with the aromatic ester complexes giving a much longer lifetime and higher quantum yields. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
The synthesis of a new bis(2,2-bipyridine), bridged by a Schiff base cyclohexane moiety is described. Surprisingly, this compound does not appear to form discrete oligonuclear metal complexes on the addition of zinc(II) and iron(II) cations. In order to rationalise this behaviour, the compound's conformation has been explored using a combination of circular dichroism, X-ray crystallography and DFT calculations, indicating that at least two energy barriers need to be overcome to orientate the ligand in a suitable conformation to permit the formation of coordination helicates with control over the metal centred stereochemistry. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Enantiomerically pure N,N'-bis(-2,2'-dipyridyl-5-yl)carbonyl-(S/R,S/R)-1,2-diphenylethylenediamine has been synthesised by linking two 2,2'-bipyridine units by (R,R)- and (S,S)-1,2-diphenylethylenediamine. The ligands possess a hindered rotation between the bipyridine chromophores, which are held together by intramolecular hydrogen bonds. ES mass spectroscopy confirmed that reaction with Fe(II), Co(III) and Cd(II) afforded dinuclear complexes. CD spectroscopy implied that enantiopure ligands conferred helicity to the metals centre giving a dominant triple helicate diastereoisomer (with the RR isomer giving a P helicate). H-1 NMR spectroscopy of the cadmium complex confirmed the presence of a single diastereoisomer. (C) 2003 Elsevier B.V. All rights reserved.
Heat capacities of ionic liquids as a function of temperature at 0.1 MPa. measurement and prediction
Resumo:
Heat capacities of nine ionic liquids were measured from (293 to 358) K by using a heat flux differential scanning calorimeter. The impact of impurities (water and chloride content) in the ionic liquid was analyzed to estimate the overall uncertainty. The Joback method for predicting ideal gas heat capacities has been extended to ionic liquids by the generation of contribution parameters for three new groups. The principle of corresponding states has been employed to enable the subsequent calculation of liquid heat capacities for ionic liquids, based on critical properties predicted using the modified Lydersen-Joback-Reid method, as a function of the temperature from (256 to 470) K. A relative absolute deviation of 2.9% was observed when testing the model against 961 data points from 53 different ionic liquids reported previously and measured within this study.
Resumo:
The effect of the addition of acetonitrile on the solubility of carbon dioxide in an ionic liquid, the 1-ethyl-3- methylimidazolium bis(trifluoromethanesulfonyl)amide, [C(2)mim][NTf2], was studied experimentally at pressures close to atmospheric and as a function of temperature between 290 and 335 K. It was observed that the solubility of carbon dioxide decreases linearly with the mole fraction of acetonitrile from a value of 2.6 x 10(-2) in the pure ionic liquid at 303 K to a mole fraction of 1.3 x 10(-2) in the mixture [C(2)mim][NTf2] + CH3CN with x(CH3CN) = 0.77 at the same temperature. The gas solubility decreases with temperature, and the thermodynamic properties of solvation could be calculated. The vapor pressures of the [ C2mim][ NTf2] + CH3CN mixtures were measured in the same temperature range, and strong negative deviations from Raoult's law were obtained: up to 36% for a mixture with x(CH3CN) = 0.46 at 334 K. Negative excess molar volumes of approximately -1 cm(3) mol(-1) at equimolar composition could also be calculated from density measurements of the pure components and of the mixtures. These observations are confirmed by neutron diffraction studies and are compatible with the existence of strong ion-dipole interactions in the mixed liquid solvent.
Resumo:
The synthesis of the C2-symmetrical ligand 1 consisting of two naphthalene units connected to two pyridine-2,6-dicarboxamide moieties linked by a xylene spacer and the formation of LnIII-based (Ln1/4 Sm, Eu, Tb, and Lu) dimetallic helicates [Ln2 · 13] in MeCN by means of a metal-directed synthesis is described. By analyzing the metal-induced changes in the absorption and the fluorescence of 1, the formation of the helicates, and the presence of a second species [Ln2 · 12] was confirmed by nonlinear- regression analysis. While significant changes were observed in the photophysical properties of 1, the most dramatic changes were observed in the metal-centred lanthanide emissions, upon excitation of the naphthalene antennae. From the changes in the lanthanide emission, we were able to demonstrate that these helicates were formed in high yields (ca. 90% after the addition of 0.6 equiv. of LnIII), with high binding constants, which matched well with that determined from the changes in the absorption spectra. The formation of the LuIII helicate, [ Lu2 · 13 ] , was also investigated for comparison purposes, as we were unable to obtain accurate binding constants from the changes in the fluorescence emission upon formation of [Sm2 · 13], [Eu2 · 13], and [Tb2 · 13].
Resumo:
Colourless crystals of [Hg-2(Mmt)(Dmt)(2)](NO3)(H2O) were obtained from a reaction of mercuric nitrate with nionomethyl- and dimethyl-1,2.4-triazolate (Mmt(-) and Dmt(-), respectively). In the crystal structure (monoclinic, C2/c (no. 15), a = 2579.4(4) b = 1231.1(2), c = 1634.8(2) pm, beta = 128.32(1)degrees V = 4073.3(11).10(6).pm(3): Z = 8, R-1 [I-0 > 2 sigma(I-0)]: 0.0355), half of the mercuric ions are essentially two-coordinate (Hg-N: 210-215 pm), the other half are tetrahedrally surrounded by N-donor atoms (Hg-N: 221, 225 pm) of the Mmt(-) and Dmt(-) anions. These three-N ligands construct a three-dimensional framework.
Resumo:
The complex formation of the uranyl ion, UO22+, with chloride ions in acetonitrile has been investigated by factor analysis of UV-vis absorption and U L-3 edge EXAFS (extended X-ray absorption fine structure) spectra. As a function of increasing [Cl-]/[UO22+] ratio, the five monomeric species [UO2(H2O)(5)](2+), [UO2Cl(H2O)(2)(MeCN)(2)](+), [UO2Cl2(H2O)(MeCN)(2)], [UO2Cl3(MeCN)(2)](-), and [UO2Cl4](2-) have been observed. The distances determined in the first coordination sphere are: U-O-ax = 1.77 angstrom, U-O-H2O = 2.43 angstrom, U-N-MeCN = 2.53 angstrom, and U-Cl = 2.68 angstrom. A crystalline material has been obtained from the intermediate solution with the [Cl-]/[UO22+] ratio of similar to 2, where [UO2Cl2(H2O)(MeCN)(2)] is the dominating species. The crystal structure analysis of this material revealed a tetrameric complex, [(UO2)(4)(mu(2)-Cl)(4)(mu(3)-O)(2)(H2O)(2)(CH3CN)(4)]center dot(CH3CN). The crystal data are: monoclinic, space group P2(1)/n, a 10.6388(5) angstrom, b = 14.8441(5) angstrom, c = 10.8521(5) angstrom, beta = 109.164(5)degrees, and Z = 2. The U(VI) coordination of the solution species [UO2Cl2(H2O)(MeCN)(2)] changes during the crystallization by replacing one MeCN molecule with a bridging mu(3)-O atom in the tetramer.
Resumo:
The halide derivatives of yttrium ortho-oxomolybdate YX[MoO4] (X = F, Cl) both crystallize in the monoclinic system with four formula units per unit cell. YF[MoO4] exhibits a primitive cell setting (space group P2(1)/c, a = 519.62(2) pm, b = 1225.14(7) pm, c = 663.30(3) pm, beta = 112.851(4)degrees), whereas the lattice of YCl[MoO4] shows face-centering (space group C2/m; a = 1019.02(5) pm, b = 720.67(4) pm, c = 681.50(3) pm, beta = 107.130(4)degrees). The two compounds each contain crystallographically unique Y3+ cations, which are found to have a coordination environment of six oxide and two halide anions. In the case of YF[MoO4], the coordination environment is seen as square antiprisms, and for YCl[MoO4], trigon-dodecahedra. are found. The discrete tetrahedral [MoO4](2-) units of the fluoride derivative are exclusively bound by six terminal Y3+ cations, while those of the chloride compound show a 5-fold coordination around the tetrahedra with one edge-bridging and four terminal Y3+ cations. The halide anions in each compound exhibit a coordination number of two, building up isolated planar rhombus-shaped units according to [Y2F2](4+) in YF[MoO4] and [Y2Cl2](4+) in YCl[MoO4], respectively. Both compounds were synthesized at high temperatures using Y2O3, MoO3, and the corresponding yttrium trihalide in a molar ratio of 1:3:1. Single crystals of both are insensitive to moist air and are found to be coarse shaped and colorless with optical band gaps situated in the near UV around 3.78 eV for the fluoride and 3.82 eV for the chloride derivative. Furthermore, YF[MoO4] seems to be a suitable material for doping to obtain luminescent materials because the Eu3+-doped compound shows an intense red luminescence, which has been spectroscopically investigated.
Resumo:
The coordination of olefins to square-planar Pd(II) and Pt(II) complexes containing 2,9-dimethylphenanthroline (L1) often involves a change of color associated with a change of geometry at the metal center. In order to obtain suitable colorimetric detectors for ethylene gas, a series of new Pd(II) and Pt(II) compounds with a range of 2,9-disubstituted phenanthroline ligands [2,9-di-n-butyl-1,10-phenanthroline (L-2), 2,9-di-s-butyl-1,10-phenanthroline (L3), 2,9-diphenyl-1,10-phenanthroline (L4), and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (bathocuproine, L5)] have been prepared and their reactivity toward ethylene investigated both in solution and after depositing the detector compounds on a variety of solid supports. The Pd(II) complex [PdCl2(L2)] supported on silica undergoes a clear color change upon exposure to ethylene, while remaining stable toward air and water, and forms the basis for new simple colorimetric detectors with potential applications in ethylene pipe-leak detection and the monitoring of fruit ripening. Encouragingly, the detector is able to discriminate between fruit at different stages of ripening. The response of the detector to other volatiles was also examined, and specific color changes were also observed upon exposure to aromatic acetylenes. The crystal structures of four new derivatives, including the ethylene-Pt(II) complex [PtCl2(C2H4)(L2)], are also described.
Resumo:
The synthesis of three new homoleptic trischelate ruthenium( II) complexes bearing new 2,2'-bipyridine ligands, 5,5'-dibenzylamido-2,2'-bipyridine (L1) and 5-benzylamido-2,2'- bipyridine (L2) has been achieved. In the case of [Ru(L2)(3)](2+), the mer and fac isomers have been separated. H-1 NMR spectroscopic anion binding studies indicate that the two C-3-symmetric pockets provided by [ Ru(L1)(3)](2+) is conducive to receive a range of anions, although this is not readily reflected in the photophysical behaviour. The fac-isomer of [Ru(L2)(3)](2+) does appear to have an enhancement in the binding interactions over the mer form with dihydrogenphosphate salts, although the difference is much less marked with the spherical chloride ions. From X-ray crystallographic evidence, the ability to hold water in the "anion" binding cleft can inhibit the strength of the interactions with anions, giving rise to the observed selectivity for directional oxoanions such as dihydrogen phosphate.
Resumo:
The volumetric properties of seven {water + ionic liquid} binary mixtures have been studied as a function of temperature from (293 to 343) K. The phase behaviour of the systems was first investigated using a nephelometric method and excess molar volumes were calculated from densities measured using an Anton Paar densimeter and fitted using a Redlich-Kister type equation. Two ionic liquids fully miscible with water (1-butyl-3-methylimidazolium tetrafluoroborate ([CCIm][BF]) and 1-ethyl-3-methylimidazolium ethylsulfate ([CCIm][EtSO])) and five ionic liquids only partially miscible with water (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([CCIm][NTf]), 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([CCIm][NTf]), 1-butyl-3-methylimidazolium hexafluorophosphate ([CCIm][PF]), 1-butyl-3-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([CCPyrro][NTf]), and butyltrimethylammonium bis(trifluoromethylsulfonyl)imide ([N][NTf])) were chosen. Small excess volumes (less than 0.5 cm · mol at 298 K) are obtained compared with the molar volumes of the pure components (less than 0.3% of the molar volume of the pure ionic liquid). For all the considered systems, except for {[CCIm][EtSO] + water}, positive excess molar volumes were calculated. Finally, an increase of the non-ideality character is observed for all the systems as temperature increases. © 2009 Elsevier Ltd. All rights reserved.
Resumo:
As the range of available ionic liquids increases, methods by which important engineering parameters such as gas solubilities can be estimated from simple structural information become ever more desirable. COSMO-based thermodynamic models, such as that used by COSMOthermX, allow the determination of such data for pure and mixed component systems. Herein, we evaluate the predictive capability of COSMOthermX through a comparison with literature data obtained from the IUPAC database which contains data for 15 gases in 27 ionic liquids, To determine any effect inherent to ionic liquids, gas solubility predictions were first performed for selected molecular solvents at constant temperature and pressure. Further estimations of gas solubility at temperatures ranging from (278 to 368) K at 0.1 MPa in water were performed for 14 gases. The Study has demonstrated that COSMOthermX is capable of predicting, qualitatively, gas solubilities in ionic liquids and, hence, reducing the amount of unnecessary experimental measurements prior to specific applications using ionic liquids.