879 resultados para Iteration Scheme
Resumo:
The goal of this paper is to present an approximation scheme for a reaction-diffusion equation with finite delay, which has been used as a model to study the evolution of a population with density distribution u, in such a way that the resulting finite dimensional ordinary differential system contains the same asymptotic dynamics as the reaction-diffusion equation.
Resumo:
We introduce the notion of spectral flow along a periodic semi-Riemannian geodesic, as a suitable substitute of the Morse index in the Riemannian case. We study the growth of the spectral flow along a closed geodesic under iteration, determining its asymptotic behavior.
Resumo:
Following the lines of Bott in (Commun Pure Appl Math 9:171-206, 1956), we study the Morse index of the iterates of a closed geodesic in stationary Lorentzian manifolds, or, more generally, of a closed Lorentzian geodesic that admits a timelike periodic Jacobi field. Given one such closed geodesic gamma, we prove the existence of a locally constant integer valued map Lambda(gamma) on the unit circle with the property that the Morse index of the iterated gamma(N) is equal, up to a correction term epsilon(gamma) is an element of {0,1}, to the sum of the values of Lambda(gamma) at the N-th roots of unity. The discontinuities of Lambda(gamma) occur at a finite number of points of the unit circle, that are special eigenvalues of the linearized Poincare map of gamma. We discuss some applications of the theory.
Resumo:
Under the assumption that c is a regular cardinal, we prove the existence and uniqueness of a Boolean algebra B of size c defined by sharing the main structural properties that P(omega)/fin has under CH and in the N(2)-Cohen model. We prove a similar result in the category of Banach spaces. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The traveling salesman problem is although looking very simple problem but it is an important combinatorial problem. In this thesis I have tried to find the shortest distance tour in which each city is visited exactly one time and return to the starting city. I have tried to solve traveling salesman problem using multilevel graph partitioning approach.Although traveling salesman problem itself very difficult as this problem is belong to the NP-Complete problems but I have tried my best to solve this problem using multilevel graph partitioning it also belong to the NP-Complete problems. I have solved this thesis by using the k-mean partitioning algorithm which divides the problem into multiple partitions and solving each partition separately and its solution is used to improve the overall tour by applying Lin Kernighan algorithm on it. Through all this I got optimal solution which proofs that solving traveling salesman problem through graph partition scheme is good for this NP-Problem and through this we can solved this intractable problem within few minutes.Keywords: Graph Partitioning Scheme, Traveling Salesman Problem.
Resumo:
This paper explaina why workers lack motivation near bankruptcy, why they tend to leave companies in financiai distreas, and why thoae who remam require higher compensation. Theae indirect costa of financiai diatresa adie becauae the optimal combination of debt and incentive achem.ea, deaigned to minimize agency costa, ends up underpaying managers when there ia a bankruptcy threat. The paper a1so providea new empirica1 implications on the intera.ction between financiai reatructuring and changea in managerial compensation. Theae predictions are supported by the findings of Gilson and Vetsuypens (1992).
Resumo:
This project describes an authentication technique that is shoulder-surfing resistant. Shoulder surfing is an attack in which an attacker can get access to private information by observing the user’s interaction with a terminal, or by using recording tools to record the user interaction and study the obtained data, with the objective of obtaining unauthorized access to a target user’s personal information. The technique described here relies on gestural analysis coupled with a secondary channel of authentication that uses button pressing. The thesis presents and evaluates multiple alternative algorithms for gesture analysis, and furthermore assesses the effectiveness of the technique.
Resumo:
In this dissertation we present a model for iteration of Katsuno and Mendelzon’s Update, inspired in the developments for iteration in AGM belief revision. We adapt Darwiche and Pearls’ postulates of iterated belief revision to update (as well as the independence postulate proposed in [BM06, JT07]) and show two families of such operators, based in natural [Bou96] and lexicographic revision [Nay94a, NPP03]. In all cases, we provide a possible worlds semantics of the models.
Resumo:
The aim of this work was to develop a quality index method (QIM) scheme for whole ice-boxed refrigerated blackspot seabream and to perform shelf-life evaluations, using sensory analysis, GR Torrymeter measurements and bacterial counts of specific spoilage organisms (SSO) during chilled storage. A QIM scheme based on a total of 30 demerit points was developed. Sensory, physical and microbiological data were integrated and used to determine the rejection point. Results indicated that the shelf-life of blackspot seabream is around 12-13 days. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The scheme is based on Ami Harten's ideas (Harten, 1994), the main tools coming from wavelet theory, in the framework of multiresolution analysis for cell averages. But instead of evolving cell averages on the finest uniform level, we propose to evolve just the cell averages on the grid determined by the significant wavelet coefficients. Typically, there are few cells in each time step, big cells on smooth regions, and smaller ones close to irregularities of the solution. For the numerical flux, we use a simple uniform central finite difference scheme, adapted to the size of each cell. If any of the required neighboring cell averages is not present, it is interpolated from coarser scales. But we switch to ENO scheme in the finest part of the grids. To show the feasibility and efficiency of the method, it is applied to a system arising in polymer-flooding of an oil reservoir. In terms of CPU time and memory requirements, it outperforms Harten's multiresolution algorithm.The proposed method applies to systems of conservation laws in 1Dpartial derivative(t)u(x, t) + partial derivative(x)f(u(x, t)) = 0, u(x, t) is an element of R-m. (1)In the spirit of finite volume methods, we shall consider the explicit schemeupsilon(mu)(n+1) = upsilon(mu)(n) - Deltat/hmu ((f) over bar (mu) - (f) over bar (mu)-) = [Dupsilon(n)](mu), (2)where mu is a point of an irregular grid Gamma, mu(-) is the left neighbor of A in Gamma, upsilon(mu)(n) approximate to 1/mu-mu(-) integral(mu-)(mu) u(x, t(n))dx are approximated cell averages of the solution, (f) over bar (mu) = (f) over bar (mu)(upsilon(n)) are the numerical fluxes, and D is the numerical evolution operator of the scheme.According to the definition of (f) over bar (mu), several schemes of this type have been proposed and successfully applied (LeVeque, 1990). Godunov, Lax-Wendroff, and ENO are some of the popular names. Godunov scheme resolves well the shocks, but accuracy (of first order) is poor in smooth regions. Lax-Wendroff is of second order, but produces dangerous oscillations close to shocks. ENO schemes are good alternatives, with high order and without serious oscillations. But the price is high computational cost.Ami Harten proposed in (Harten, 1994) a simple strategy to save expensive ENO flux calculations. The basic tools come from multiresolution analysis for cell averages on uniform grids, and the principle is that wavelet coefficients can be used for the characterization of local smoothness.. Typically, only few wavelet coefficients are significant. At the finest level, they indicate discontinuity points, where ENO numerical fluxes are computed exactly. Elsewhere, cheaper fluxes can be safely used, or just interpolated from coarser scales. Different applications of this principle have been explored by several authors, see for example (G-Muller and Muller, 1998).Our scheme also uses Ami Harten's ideas. But instead of evolving the cell averages on the finest uniform level, we propose to evolve the cell averages on sparse grids associated with the significant wavelet coefficients. This means that the total number of cells is small, with big cells in smooth regions and smaller ones close to irregularities. This task requires improved new tools, which are described next.