950 resultados para Intrauterine Growth Retardation
Resumo:
Emergency Medical Dispatchers (EMDs) are charged with taking the calls of those who ring the national emergency number for urgent medical assistance, for dispatching paramedical crews, and for providing as much assistance as can be offered remotely until paramedics arrive. In a job role which is filled with vicarious trauma, emergency situations, pressure, abuse, grief and loss, EMDs are often challenged in maintaining their mental health. The seemingly senseless death of a teenager who commits suicide, the devastating loss of a baby to Sudden Infant Death Syndrome, lives lost through natural disasters, and multiple vehicle fatalities are only a few of the types of experiences EMDs are faced with in the course of their work. However, amongst the horror are positive stories such as coaching a caller to negotiate the birth of a baby and saving a life in jeopardy from heart failure. EMD’s need to cope with the daily challenges of the role; make sense of their work and create meaning in order to have a fulfilled and sustainable career. Although some people in this work struggle greatly to withstand the impacts of vicarious trauma, there are also stories of personal growth. In this Chapter we use a case study to explore how meaning is made for those who are an auditory witness to a continual flux of trauma for others and how the traumatic experiences EMDs bear witness to can also be a catalyst for posttraumatic growth.
Resumo:
In the dry tropics of northern Australia heifers are generally weaned mid-year at about six months of age and experience two dry seasons and a wet season prior to first mating at 2 years of age when only 60% are likely to conceive (Entwistle 19830. Pre-mating liveweight (PMLW) explains much of the variation in conception rate, but year effects explain further variations (Rudder et al 1985).
Resumo:
Tick infestation occurs over 1.3 x 106 km2 in northern Australia. It has been difficult to estimate the economic effects of ticks due to a lack of information on their effects on growth and reproduction (Anon 1975). 12th Biennial Conference. February 1978. Melbourne, Victoria
Resumo:
A strategy comprising a winter/spring protein supplement, rumen modifier and hormonal growth promotant (Compudose 400) was used in either the first year (Tl), second year (T2), or in both years (T1+2) following weaning in Brahman cross steers as a means of increasing liveweight gain up to 2.5 years of age. T2 produced the heaviest final liveweight (544.7 kg) and highest overall liveweight gain (366.7 kg), but these were not significantly different from T1 (538.6 kg; 360.9 kg), or T1+2 (528.7 kg; 349.3 kg). However, final liveweight and overall liveweight gains of T1 and T2 but not T1+2 were significantly greater than for untreated (C) steers (504.9 kg; 325.2 kg, both P < 0.05). Regardless of the strategy imposed, liveweight and liveweight gain were enhanced, however final liveweights in each treatment were below the preferred minimum target liveweight (570-580 kg) for premium export markets. Treatment in both years gave no benefit over treatment in 1 year only. 19th Biennial Conference. 5-9 July 1992. LaTrobe University, Melbourne.
Resumo:
Beef producers have expressed concern that cattle moved from one location to another do not always perform as well as comparable local cattle. Research station records and field trial data were examined to determine the effect of relocation on growth rate using data sets for animals of different age and liveweight at relocation and of different genotypes. 21st Biennial Conference. 8-12 July University of Queensland, Brisbane.
Resumo:
Isolates of Sclerotinia sclerotiorum were collected from infected lentil plants from 2 agro-ecological zones of Syria and used to study their comparative growth on culture media and pathogenicity on different lentil genotypes. The growth studies were carried out on Potato Dextrose Agar (PDA) growth media under laboratory conditions. Mycelial radial growth and sclerotial production were the parameters used to compare the isolates. Pathogenicity studies were carried out with selected isolates on 10 lentil genotypes, infected as detached shoots and as whole potted-plants in the plastic house. The isolates showed considerable variation in cultural characteristics through mycelial growth, mycelial pigmentation and sclerotial production in the media plates. There were significant differences in the growth and sclerotial production of most of the isolates, but no apparent correlation between mycelial growth and sclerotial production among the isolates. Genotype by isolate interactions was significant for the isolates tested for pathogenicity. These interactions, however, appeared to be caused by differences in virulence of the isolates and did not suggest the occurrence of distinct pathogenic races of the pathogen isolates.
Resumo:
This study investigated whether mixed-species designs can increase the growth of a tropical eucalypt when compared to monocultures. Monocultures of Eucalyptus pellita (E) and Acacia peregrina (A) and mixtures in various proportions (75E:25A, 50E:50A, 25E:75A) were planted in a replacement series design on the Atherton Tablelands of north Queensland, Australia. High mortality in the establishment phase due to repeated damage by tropical cyclones altered the trial design. Effects of experimental designs on tree growth were estimated using a linear mixed-effects model with restricted maximum likelihood analysis (REML). Volume growth of individual eucalypt trees were positively affected by the presence of acacia trees at age 5 years and this effect generally increased with time up to age 10 years. However, the stand volume and basal area increased with increasing proportions of E. pellita, due to its larger individual tree size. Conventional analysis did not offer convincing support for mixed-species designs. Preliminary individual-based modelling using a modified Hegyi competition index offered a solution and an equation that indicates acacias have positive ecological interactions (facilitation or competitive reduction) and definitely do not cause competition like a eucalypt. These results suggest that significantly increased in growth rates could be achieved with mixed-species designs. This statistical methodology could enable a better understanding of species interactions in similarly altered experiments, or undesigned mixed-species plantations.
Resumo:
The problem of cannibalism in communally reared crabs can be eliminated by separating the growing crabs into holding compartments. There is currently no information on optimal compartment size for growing crabs individually. 136 second instar crablets (Portunus sanguinolentus) (C2 ca. 7-10 mm carapace width (CW)) were grown for 90 days in 10 different-sized opaque and transparent walled acrylic compartments. The base area for each compartment ranged from small (32 mm × 32 mm) to large (176 mm × 176 mm). Effects of holding space and wall transparency on survival, CW, moult increment, intermoult period and average weekly gain (AWG) were examined. Most crabs reached instars C9-C10 (50-70 mm CW) by the end of experiment. The final survival rate in the smallest compartment was 25% mainly due to moult-related mortality predominantly occurring at the C9 instar. However, crabs in these smaller compartments had earlier produced significantly larger moult increments from instar to instar than those in the larger compartments (P < 0.05). Crabs in the smaller compartments (<65 mm × 65 mm) also showed significantly longer moult periods (P < 0.05). The net result was that AWG in CW was 5.22 mm week-1 for the largest compartment and 5.15 mm week-1 in smallest and did not differ significantly between compartment size groups (P = 0.916). Wall transparency had no impact on survival (P = 0.530) but a slight impact on AWG (P = 0.014). Survival rate was the best indicator of minimum acceptable compartment size (?43 mm × 43 mm) for C10 crablets because below this size death occurred before growth rate was significantly affected. For further growth, it would be necessary to transfer the crablets to larger compartments.
Resumo:
A concentration as low as 1 μM lead (Pb) is highly toxic to plants, but previous studies have typically related plant growth to the total amount of Pb added to a solution. In the present experiment, the relative fresh mass of cowpea (Vigna unguiculata) was reduced by 10% at a Pb2+ activity of 0.2 μM for the shoots and at a Pb2+ activity of 0.06 μM for the roots. The primary site of Pb2+ toxicity was the root, causing severe reductions in root growth, loss of apical dominance (shown by an increase in branching per unit root length), the formation of localized swellings behind the root tips (due to the initiation of lateral roots), and the bending of some root tips. In the root, Pb was found to accumulate primarily within the cell walls and intercellular spaces.
Resumo:
2,4-Dinitrophenol and paranitrophenol are two major soil pollutants which are known to be metabolized by different soil microbes. Relative phytotoxicities of these parent compounds and their metabolic transformation products to the growth of cucumber seedlings were assessed. It was evident that such microbial transformations widely occurring in the soil are effective detoxification reactions and are beneficial for the plants.
Resumo:
Physiological and genetic studies of leaf growth often focus on short-term responses, leaving a gap to whole-plant models that predict biomass accumulation, transpiration and yield at crop scale. To bridge this gap, we developed a model that combines an existing model of leaf 6 expansion in response to short-term environmental variations with a model coordinating the development of all leaves of a plant. The latter was based on: (1) rates of leaf initiation, appearance and end of elongation measured in field experiments; and (2) the hypothesis of an independence of the growth between leaves. The resulting whole-plant leaf model was integrated into the generic crop model APSIM which provided dynamic feedback of environmental conditions to the leaf model and allowed simulation of crop growth at canopy level. The model was tested in 12 field situations with contrasting temperature, evaporative demand and soil water status. In observed and simulated data, high evaporative demand reduced leaf area at the whole-plant level, and short water deficits affected only leaves developing during the stress, either visible or still hidden in the whorl. The model adequately simulated whole-plant profiles of leaf area with a single set of parameters that applied to the same hybrid in all experiments. It was also suitable to predict biomass accumulation and yield of a similar hybrid grown in different conditions. This model extends to field conditions existing knowledge of the environmental controls of leaf elongation, and can be used to simulate how their genetic controls flow through to yield.
Resumo:
Limb-loss in crustaceans can reduce moult increment and delay or advance the timing of moulting, both aspects that are likely to impact upon soft-shell crab production. Pond-reared blue swimmer crabs Portunus pelagicus were harvested and maintained in a crab shedding system. The wet weight, carapace width (CW) and the occurrence of limb-loss were assessed before stocking in the shedding system and after each of the next three moults. Many of the crabs were initially missing one or two limbs and these did not grow as much as the crabs that were intact at the start of the trial. Despite its strong correlation with wet weight, CW changes proved to be misleading. Limb-loss reduced the %CW increment but not the per cent weight increment (where the later is calculated from the actual pre-moult weight). Pre-moult weight explained much of the variation in post-moult weight, with crabs moulting to approximately double their weight. Limb-loss reduced 'growth' and production from the pond because it reduced pre-moult weight but limb-loss did not alter the weight change on shedding a given weight of crabs, although some of that change now included regeneration of limbs. One can hypothesize that much of the size variation seen in pond-reared crabs may be due to accumulated effects of repeated limb-loss, rather than genetic variation.
Resumo:
The objective of this work is to study the growth of a cylindrical void ahead of a notch tip in ductile FCC single crystals under mode I, plane strain, small scale yielding (SSY) conditions. To this end, finite element simulations are performed within crystal plasticity framework neglecting elastic anisotropy. Attention is focussed on the effects of crystal hardening, ratio of void diameter to spacing from the notch and crystal orientation on plastic flow localization in the ligament connecting the notch and the void as well as their growth. The results show strong interaction between shear bands emanating from the notch and angular sectors of single slip forming around the void leading to intense plastic strain development in the ligament. Further, the ductile fracture processes are retarded by increase in hardening of the single crystal and decrease in ratio of void diameter to spacing from the notch. Also, a strong influence of crystal orientation on near-tip void growth and plastic slip band development is observed. Finally, the synergistic, cooperative growth of multiple voids ahead of the notch tip is examined.
Resumo:
Relationships between freshwater flows and growth rates of the opportunistic predatory finfish barramundi Lates calcarifer in a dry tropical estuary were examined using data from a long-term tag-recapture programme. Lagged effects were not investigated. After accounting for length at release, time at liberty and seasonal variation (e.g. winter, spring, summer and autumn), growth rates were significantly and positively related to fresh water flowing to the estuary. Effects were present at relatively low levels of freshwater flow (i.e. 2.15 m3 s-1, the 5th percentile of the mean flow rate experienced by fish in the study during time at liberty). The analysis, although correlative, provides quantitative evidence to support the hypothesis that freshwater flows are important in driving the productivity of estuaries and can improve growth of species high in the trophic chain.
Resumo:
Quantitative information regarding nitrogen (N) accumulation and its distribution to leaves, stems and grains under varying environmental and growth conditions are limited for chickpea (Cicer arietinum L.). The information is required for the development of crop growth models and also for assessment of the contribution of chickpea to N balances in cropping systems. Accordingly, these processes were quantified in chickpea under different environmental and growth conditions (still without water or N deficit) using four field experiments and 1325 N measurements. N concentration ([N]) in green leaves was 50 mg g-1 up to beginning of seed growth, and then it declined linearly to 30 mg g-1 at the end of seed growth phase. [N] in senesced leaves was 12 mg g-1. Stem [N] decreased from 30 mg g-1 early in the season to 8 mg g-1 in senesced stems at maturity. Pod [N] was constant (35 mg g-1), but grain [N] decreased from 60 mg g-1 early in seed growth to 43 mg g-1 at maturity. Total N accumulation ranged between 9 and 30 g m-2. N accumulation was closely linked to biomass accumulation until maturity. N accumulation efficiency (N accumulation relative to biomass accumulation) was 0.033 g g-1 where total biomass was -2 and during early growth period, but it decreased to 0.0176 g g-1 during the later growth period when total biomass was >218 g m-2. During vegetative growth (up to first-pod), 58% of N was partitioned to leaves and 42% to stems. Depending on growth conditions, 37-72% of leaf N and 12-56% of stem N was remobilized to the grains. The parameter estimates and functions obtained in this study can be used in chickpea simulation models to simulate N accumulation and distribution.