744 resultados para Intraperitoneal
Resumo:
Purpose: To investigate the effect of Dipsacus asperoides (Xue Duan), a traditional Chinese medicine, on rats with spinal cord injury (SCI). Methods: In this study a total of 40 adult rats were used after inducing SCI where Xue Duan was applied on experimental group and phosphate-buffered saline (PBS) was administered in corresponding control groups. Intraperitoneal administration of both compounds for a period of four weeks (28 days) was carried out at a dose of 10 mg/kg/day. Bright field microscopy was performed on the tissues. Results: Bright Field microscopy of tissue sections showed significant reduction in cavity area that resulted from injury, that is from 0.19 ± 0.05 mm2 to 0.09 ± 0.03 mm2 (p < 0.01) in untreated and treated groups respectively. Similarly western blotting results showed a decrease in the expression of NF-kB p65 and I-kBα (p < 0.01). These two compounds are important in increasing secondary pathophysiology in SCI. The results for MPO activity also revealed significantly reduced infiltration of leukocytes to the injury site (p < 0.01). Conclusion: This study reveals the positive effect of the plant material in reducing inflammation in rats with traumatic SCI.
Resumo:
Purpose: To investigate the effect of licochalcone A (LA) on the inhibition of cell proliferation and ERK1/2 phosphorylation in bladder carcinoma cell lines. Methods: Cell viability was investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) assay. Dye-binding method was used to examine the concentration of proteins. Lymphocytes were extracted from mice and after surface staining were subjected to BD fixation and permeabilization for intracellular staining. Flow cytometry was used to measure cellular fluorescence. Results: MTT results revealed a significant decrease in the proliferation of UM-UC-3, J82 and HT-1197 cell lines on treatment with LA. LA also induced reduction in phosphorylation of ERK1/2 in all three carcinoma cell lines. In the mouse model, licochalcone A treatment via intraperitoneal (ip) administration induced a significant decrease in the level of regulatory T cells (Tregs). Comparison of the mouse interferon-α (IFN-α)-treated and LA-treated groups revealed that LA treatment caused enhancement of cytotoxic T lymphocyte (CTL) activity similar to that of IFN-α. Administration of UM-UC-3 cells in C3H/HeN mice resulted in marked reduction in the counts for splenocytes and CD4+ CD25+ Foxp3+ T (regulatory T cells) cell proportion in LA-treated mice compared to untreated control group. Conclusion: Licochalcone A may be of therapeutic importance for the prevention of bladder carcinoma. However, studies are required to ascertain the compound’s usefulness in this regard.
Resumo:
Purpose: To evaluate synergy in the analgesic effects of a combination therapy of carbamazepine (CBZ) and gabapentin (GBP) in diabetic neuropathic pain. Methods: Neuropathic pain was produced in rats by a single intraperitoneal injection of streptozotocin (STZ) at 60 mg/kg. CBZ, GBP, and their combination were orally administered at varying doses (GBP 30 - 180 mg/kg; CBZ 20 - 40 mg/kg) comparable to their therapeutic doses in humans. Nociceptive responses in the diabetic rats were assessed using hot plate test. Results: Hot plate latency significantly increased with oral administration of GBP at a dose of 180 mg/kg when compared with control group (p < 0.05), while at a dose of 90 mg/kg, the increase was not significant. Oral administration of CBZ at doses of 20 and 40 mg/kg did not produce any significant impact on hot plate latency. However, a combination of GBP at 90 mg/kg and CBZ at 20 mg/kg produced significant increase in latency, compared with control group and other groups (p < 0.05), except the group that received 180 mg/kg GBP. The combination of low dose GBP 30 mg/kg and carbamazepine 30 mg/kg had no significant effect on latency (p > 0.05). Conclusion: The results obtained in this study provide useful information on the combination therapy of GBP and CBZ, which may be applied in the treatment of pain in diabetic neuropathy.
Resumo:
Purpose: To investigate the effect of Astragalus membranaceus (Fisch.) Bunge. extract (AMBE) on streptozotocin-induced diabetic rats. Methods: The aqueous extract of AMB was obtained by steeping the dried Astragalus membranaceus (Fisch.) Bunge. in water at 60 oC three times, each for 1 h, before first drying in an oven at 100 oC and then freeze-drying the last extract thus obtained. Diabete model rats was induced by a single intraperitoneal injection of a freshly prepared solution of streptozotocin (50 mg/kg). The rats were randomly divided into 6 groups of ten rats each: negative control group, normal control group, reference group (glibenclamide1 mg/kgbody weight) as well as AMB extract groups, namely, 40, 80 and 160 mg/kg body weight. Antihyperglycemic effect was measured by blood glucose and plasma insulin levels. Oxidative stress was evaluated in liver and kidney by antioxidant markers, viz, lipidperoxidation (LPO), superoxide dismutase (SOD), reduced glutathione (GSH), glutathione peroxidase (GPx) and catalase (CAT), while blood serum levels of creatinine and urea were also determined in both diabetic control and treated rats. Results: Compared with diabetic rats, oral administration of AMBE at a concentration of 160 mg/kg daily for 30 days showed a significant decrease in fasting blood glucose (109.438 ± 3.52, p < 0.05) and increased insulin level (13.96 ± 0.74, p < 0.05). Furthermore, it significantly reduced biochemical parameters (serum creatinine, 0.86 ± 0.29, p < 0.05) and serum urea (45.14 ± 1.79, p < 0.05). The treatment also resulted in significant increase in GSH (49.21 ± 2.59, p < 0.05), GPx (11.96 ± 1.16, p < 0.05), SOD (14.13 ± 0.49, p < 0.05), CAT (83.25 ± 3.14, p < 0.05) level in the liver and kidney of diabetic rats. Conclusion: The results suggest that AMBE may effectively normalize impaired antioxidant status in streptozotocin-induced diabetes in a dose-dependent manner. AMBE has a protective effect against lipid peroxidation by scavenging free radicals and is thus capable of reducing the risk of diabetic complications.
Resumo:
Purpose: To investigate the protective effect of rhamnopyranosyl vanilloyl (RV) from Scrophularia ningpoensis root against tetrachloromethane (CCl4)-induced acute liver injury (ALI) in mice. Methods: RV was isolated from S. ningpoensis by column chromatography. ALI model of mice was established by intraperitoneal injection of CCl4. Liver index, liver function indices, as well as serum alanine transaminase (ALT), aspartate aminotransferase (AST) and total bilirubin (TBIL) were evaluated. Lipid peroxidation (LPO)-related indices, including malonaldehyde (MDA), glutathione (GSH), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). Apoptotic proteins (Bcl-2, Bax and caspase-3) in liver tissue were determined by enzyme-linked immunosorbent assay (ELISA) and Western blot. Results: After treatment with RV (10, 20 or 40 mg/kg), liver index (5.65 - 5.21 vs. 6.68 %), ALT (90.18 - 79.68 vs. 112.47 U/L), AST (64.44 - 57.63 vs. 75.41 U/L) and TBIL (2.68 - 1.95 vs. 3.21 U/L) activities, as well as MDA (3.58 - 2.88 vs. 4.13 μmol/g), Bax and caspase-3 levels significantly (p < 0.05 or 0.01) decreased, compared with those in control group. After treatment with RV (10, 20 or 40 mg/kg), GSH (16.58 - 22.14 vs. 12.34 μmol/g), Bcl-2, SOD (86.45 - 107.61 vs. 68.43 U/mg) and GSH-Px (295.64 - 329.47 vs. 268.49 U/mg) levels or activities significantly (p < 0.05 or 0.01) increased, compared with those in control group. Conclusion: RV has protective effect against CCl4-induced ALI in mice, and the mechanisms involve the inhibition of LPO and apoptosis in liver cells. Thus, RV is a potential drug for the treatment of liver injury
Resumo:
Purpose: To investigate the anti-hyperprolactinemic activity of Prunella vulgaris L. extract (PVE) in vivo and in vitro. Methods: Rats were given intraperitoneal (i. p.) metoclopramide (MCP, 150 mg/kg daily) for 10 days to prepare hyperprolactinemia (hyperPRL) model. Bromocriptine was used as positive control drug. High (5.6 g/kg), medium (2.8 g/kg) and low (1.4 g/kg) doses of PVE were administered to hyperPRL rats. The effect of PVE on serum prolactin (PRL), estradiol (E2), progesterone (PGN), follicle stimulating hormone (FSH) and luteinizing hormone (LH) levels were investigated in the rats. MMQ cells derived from rat pituitary adenoma cells and GH3 cells from rat pituitary lactotropictumoral cells were used for in vitro experiments. The effect of PVE on PRL secretion were studied in MMQ cells and GH3 cells respectively. Results: Compared with the control group (446.21 ± 32.43 pg/mL), high (219.23 ± 10.62 pg/mL) and medium (245.47 ± 13.52 pg/mL) reduced PRL level of hyperPRL rats significantly (p 0.05). In MMQ cells, treatment with 5 mg/mL PVE or 10 mg/mL PVE) significantly suppressed PRL secretion and synthesis at 24h compared with controls (p < 0.01). Consistent with D2- action, PVE did not affect PRL in rat pituitary lactotropic tumor-derived GH3 cells that lack the D2 receptor expression, compared with controls. Conclusion: PVE showed anti-hyperPRL activity and can potentially be used for the treatment of hyperprolactinemi, but further studies are required to ascertain this
Resumo:
AIMS: Cognitive decline in Alzheimer's disease (AD) patients has been linked to synaptic damage and neuronal loss. Hyperphosphorylation of tau protein destabilizes microtubules leading to the accumulation of autophagy/vesicular material and the generation of dystrophic neurites, thus contributing to axonal/synaptic dysfunction. In this study, we analyzed the effect of a microtubule-stabilizing compound in the progression of the disease in the hippocampus of APP751SL/PS1M146L transgenic model. METHODS: APP/PS1 mice (3 month-old) were treated with a weekly intraperitoneal injection of 2 mg/kg epothilone-D (Epo-D) for 3 months. Vehicle-injected animals were used as controls. Mice were tested on the Morris water maze, Y-maze and object-recognition tasks for memory performance. Abeta, AT8, ubiquitin and synaptic markers levels were analyzed by Western-blots. Hippocampal plaque, synaptic and dystrophic loadings were quantified by image analysis after immunohistochemical stainings. RESULTS: Epo-D treated mice exhibited a significant improvement in the memory tests compared to controls. The rescue of cognitive deficits was associated to a significant reduction in the AD-like hippocampal pathology. Levels of Abeta, APP and ubiquitin were significantly reduced in treated animals. This was paralleled by a decrease in the amyloid burden, and more importantly, in the plaque-associated axonal dystrophy pathology. Finally, synaptic levels were significantly restored in treated animals compared to controls. CONCLUSION: Epo-D treatment promotes synaptic and spatial memory recovery, reduces the accumulation of extracellular Abeta and the associated neuritic pathology in the hippocampus of APP/PS1 model. Therefore, microtubule stabilizing drugs could be considered therapeutical candidates to slow down AD progression. Supported by FIS-PI12/01431 and PI15/00796 (AG),FIS-PI12/01439 and PI15/00957(JV)
Resumo:
Alzheimer's disease (AD) is the most common neurodegenerative disease in elderly. Donepezil is the first-line drug used for AD. In section one, the experimental activity was oriented to evaluate and characterize molecular and cellular mechanisms that contribute to neurodegeneration induced by the Aβ1-42 oligomers (Aβ1-42O) and potential neuroprotective effects of the hybrids feruloyl-donepezil compound called PQM130. The effects of PQM130 were compared to donepezil in a murine AD model, obtained by intracerebroventricular (i.c.v.) injection of Aβ1-42O. The intraperitoneal administration of PQM130 (0.5-1 mg/kg) after i.c.v. Aβ1-42O injection improved learning and memory, protecting mice against spatial cognition decline. Moreover, it reduced oxidative stress, neuroinflammation and neuronal apoptosis, induced cell survival and protein synthesis in mice hippocampus. PQM130 modulated different pathways than donepezil, and it is more effective in counteracting Aβ1-42O damage. The section two of the experimental activity was focused on studying a loss of function variants of ABCA7. GWA studies identified mutations in the ABCA7 gene as a risk factor for AD. The mechanism through which ABCA7 contributes to AD is not clear. ABCA7 regulates lipid metabolism and critically controls phagocytic function. To investigate ABCA7 functions, CRISPR/Cas9 technology was used to engineer human iPSCs and to carry the genetic variant Y622*, which results in a premature stop codon, causing ABCA7 loss-of-function. From iPSCs, astrocytes were generated. This study revealed the effects of ABCA7 loss in astrocytes. ABCA7 Y622* mutation induced dysfunctional endocytic trafficking, impairing Aβ clearance, lipid dysregulation and cell homeostasis disruption, alterations that could contribute to AD. Though further studies are needed to confirm the PQM130 neuroprotective role and ABCA7 function in AD, the provided results showed a better understanding of AD pathophysiology, a new therapeutic approach to treat AD, and illustrated an innovative methodology for studying the disease.
Resumo:
Cancer research and development of targeting agents in this field is based on robust studies using preclinical models. The failure rate of standardized treatment approaches for several solid tumors has led to the urgent need to fine-tune more sophisticated and faithful preclinical models able to recapitulate the features of in vivo human tumors, with the final aim to shed light on new potential therapeutic targets. Epithelial Ovarian Cancer (EOC) serous histotype (HGSOC) is one of the most lethal diseases in women due to its high aggressiveness (75% of patients diagnosed at FIGO III-IV state) and poor prognosis (less of 50% in 5 years), whose therapy often fails as chemoresistance sets in. This thesis aimed at using the novel perfusion-based bioreactor U-CUP that provides direct perfusion throughout the tumor tissue seeking to obtain an EOC 3D ex vivo model able to recapitulate the features of the original tumor including the tumor microenvironment and maintaining its cellular heterogeneity. Moreover, we optimized this approach so that it can be successfully applied to slow-frozen tumoral tissues, further extending the usefulness of this tool. We also investigated the effectiveness of Plasma Activated Ringer’s Lactate solution (PA-RL) against Epithelial Ovarian Cancer (EOC) serous histotype in both 2D and 3D cultures using ex-vivo specimens from HGSOC patients. We propose PA-RL as a novel therapy with local intraperitoneal administration, which could act on primary or metastatic ovarian tumors inducing a specific cancer cell death with reduced damage on the surrounding healthy tissues.