956 resultados para Integral turbulent time scales
Resumo:
This article discusses three possible ways to derive time domain boundary integral representations for elastodynamics. This discussion points out possible difficulties found when using those formulations to deal with practical applications. The discussion points out recommendations to select the convenient integral representation to deal with elastodynamic problems and opens the possibility of deriving simplified schemes. The proper way to take into account initial conditions applied to the body is an interesting topict shown. It illustrates the main differences between the discussed boundary integral representation expressions, their singularities and possible numerical problems. The correct way to use collocation points outside the analyzed domain is carefully described. Some applications are shown at the end of the paper, in order to demonstrate the capabilities of the technique when properly used.
Resumo:
A method of estimating dissipation rates from a vertically pointing Doppler lidar with high temporal and spatial resolution has been evaluated by comparison with independent measurements derived from a balloon-borne sonic anemometer. This method utilizes the variance of the mean Doppler velocity from a number of sequential samples and requires an estimate of the horizontal wind speed. The noise contribution to the variance can be estimated from the observed signal-to-noise ratio and removed where appropriate. The relative size of the noise variance to the observed variance provides a measure of the confidence in the retrieval. Comparison with in situ dissipation rates derived from the balloon-borne sonic anemometer reveal that this particular Doppler lidar is capable of retrieving dissipation rates over a range of at least three orders of magnitude. This method is most suitable for retrieval of dissipation rates within the convective well-mixed boundary layer where the scales of motion that the Doppler lidar probes remain well within the inertial subrange. Caution must be applied when estimating dissipation rates in more quiescent conditions. For the particular Doppler lidar described here, the selection of suitably short integration times will permit this method to be applicable in such situations but at the expense of accuracy in the Doppler velocity estimates. The two case studies presented here suggest that, with profiles every 4 s, reliable estimates of ϵ can be derived to within at least an order of magnitude throughout almost all of the lowest 2 km and, in the convective boundary layer, to within 50%. Increasing the integration time for individual profiles to 30 s can improve the accuracy substantially but potentially confines retrievals to within the convective boundary layer. Therefore, optimization of certain instrument parameters may be required for specific implementations.
Resumo:
The Stokes drift induced by surface waves distorts turbulence in the wind-driven mixed layer of the ocean, leading to the development of streamwise vortices, or Langmuir circulations, on a wide range of scales. We investigate the structure of the resulting Langmuir turbulence, and contrast it with the structure of shear turbulence, using rapid distortion theory (RDT) and kinematic simulation of turbulence. Firstly, these linear models show clearly why elongated streamwise vortices are produced in Langmuir turbulence, when Stokes drift tilts and stretches vertical vorticity into horizontal vorticity, whereas elongated streaky structures in streamwise velocity fluctuations (u) are produced in shear turbulence, because there is a cancellation in the streamwise vorticity equation and instead it is vertical vorticity that is amplified. Secondly, we develop scaling arguments, illustrated by analysing data from LES, that indicate that Langmuir turbulence is generated when the deformation of the turbulence by mean shear is much weaker than the deformation by the Stokes drift. These scalings motivate a quantitative RDT model of Langmuir turbulence that accounts for deformation of turbulence by Stokes drift and blocking by the air–sea interface that is shown to yield profiles of the velocity variances in good agreement with LES. The physical picture that emerges, at least in the LES, is as follows. Early in the life cycle of a Langmuir eddy initial turbulent disturbances of vertical vorticity are amplified algebraically by the Stokes drift into elongated streamwise vortices, the Langmuir eddies. The turbulence is thus in a near two-component state, with suppressed and . Near the surface, over a depth of order the integral length scale of the turbulence, the vertical velocity (w) is brought to zero by blocking of the air–sea interface. Since the turbulence is nearly two-component, this vertical energy is transferred into the spanwise fluctuations, considerably enhancing at the interface. After a time of order half the eddy decorrelation time the nonlinear processes, such as distortion by the strain field of the surrounding eddies, arrest the deformation and the Langmuir eddy decays. Presumably, Langmuir turbulence then consists of a statistically steady state of such Langmuir eddies. The analysis then provides a dynamical connection between the flow structures in LES of Langmuir turbulence and the dominant balance between Stokes production and dissipation in the turbulent kinetic energy budget, found by previous authors.
Evolutionary demography of long-lived monocarpic perennials: a time-lagged integral projection model
Resumo:
1. The evolution of flowering strategies (when and at what size to flower) in monocarpic perennials is determined by balancing current reproduction with expected future reproduction, and these are largely determined by size-specific patterns of growth and survival. However, because of the difficulty in following long-lived individuals throughout their lives, this theory has largely been tested using short-lived species (< 5 years). 2. Here, we tested this theory using the long-lived monocarpic perennial Campanula thyrsoides which can live up to 16 years. We used a novel approach that combined permanent plot and herb chronology data from a 3-year field study to parameterize and validate integral projection models (IPMs). 3. Similar to other monocarpic species, the rosette leaves of C. thyrsoides wither over winter and so size cannot be measured in the year of flowering. We therefore extended the existing IPM framework to incorporate an additional time delay that arises because flowering demography must be predicted from rosette size in the year before flowering. 4. We found that all main demographic functions (growth, survival probability, flowering probability and fecundity) were strongly size-dependent and there was a pronounced threshold size of flowering. There was good agreement between the predicted distribution of flowering ages obtained from the IPMs and that estimated in the field. Mostly, there was good agreement between the IPM predictions and the direct quantitative field measurements regarding the demographic parameters lambda, R-0 and T. We therefore conclude that the model captures the main demographic features of the field populations. 5. Elasticity analysis indicated that changes in the survival and growth function had the largest effect (c. 80%) on lambda and this was considerably larger than in short-lived monocarps. We found only weak selection pressure operating on the observed flowering strategy which was close to the predicted evolutionary stable strategy. 6. Synthesis. The extended IPM accurately described the demography of a long-lived monocarpic perennial using data collected over a relatively short period. We could show that the evolution of flowering strategies in short- and long-lived monocarps seem to follow the same general rules but with a longevity-related emphasis on survival over fecundity.
Resumo:
This dataset present result from the DFG- funded Arctic-Turbulence-Experiment (ARCTEX-2006) performed by the University of Bayreuth on the island of Svalbard, Norway, during the winter/spring transition 2006. From May 5 to May 19, 2006 turbulent flux and meteorological measurements were performed on the monitoring field near Ny-Ålesund, at 78°55'24'' N, 11°55'15'' E Kongsfjord, Svalbard (Spitsbergen), Norway. The ARCTEX-2006 campaign site was located about 200 m southeast of the settlement on flat snow covered tundra, 11 m to 14 m above sea level. The permanent sites used for this study consisted of the 10 m meteorological tower of the Alfred Wegener Institute for Polar- and Marine Research (AWI), the international standardized radiation measurement site of the Baseline Surface Radiation Network (BSRN), the radiosonde launch site and the AWI tethered balloon launch sites. The temporary sites - set up by the University of Bayreuth - were a 6 m meteorological gradient tower, an eddy-flux measurement complex (EF), and a laser-scintillometer section (SLS). A quality assessment and data correction was applied to detect and eliminate specific measurement errors common at a high arctic landscape. In addition, the quality checked sensible heat flux measurements are compared with bulk aerodynamic formulas that are widely used in atmosphere-ocean/land-ice models for polar regions as described in Ebert and Curry (1993, doi:10.1029/93JC00656) and Launiainen and Cheng (1995). These parameterization approaches easily allow estimation of the turbulent surface fluxes from routine meteorological measurements. The data show: - the role of the intermittency of the turbulent atmospheric fluctuation of momentum and scalars, - the existence of a disturbed vertical temperature profile (sharp inversion layer) close to the surface, - the relevance of possible free convection events for the snow or ice melt in the Arctic spring at Svalbard, and - the relevance of meso-scale atmospheric circulation pattern and air-mass advection for the near-surface turbulent heat exchange in the Arctic spring at Svalbard. Recommendations and improvements regarding the interpretation of eddy-flux and laser-scintillometer data as well as the arrangement of the instrumentation under polar distinct exchange conditions and (extreme) weather situations could be derived.
Resumo:
Turbulent mixing is a very important issue in the study of geophysical phenomena because most fluxes arising in geophysics fluids are turbulent. We study turbulent mixing due to convection using a laboratory experimental model with two miscible fluids of different density with an initial top heavy density distribution. The fluids that form the initial unstable stratification are miscible and the turbulence will produce molecular mixing. The denser fluid comes into the lighter fluid layer and it generates several forced plumes which are gravitationally unstable. As the turbulent plumes develop, the denser fluid comes into contact with the lighter fluid layer and the mixing process grows. Their development is caused by the lateral interaction between these plumes at the complex fractal surface between the dense and light fluids
Resumo:
Cuando una colectividad de sistemas dinámicos acoplados mediante una estructura irregular de interacciones evoluciona, se observan dinámicas de gran complejidad y fenómenos emergentes imposibles de predecir a partir de las propiedades de los sistemas individuales. El objetivo principal de esta tesis es precisamente avanzar en nuestra comprensión de la relación existente entre la topología de interacciones y las dinámicas colectivas que una red compleja es capaz de mantener. Siendo este un tema amplio que se puede abordar desde distintos puntos de vista, en esta tesis se han estudiado tres problemas importantes dentro del mismo que están relacionados entre sí. Por un lado, en numerosos sistemas naturales y artificiales que se pueden describir mediante una red compleja la topología no es estática, sino que depende de la dinámica que se desarrolla en la red: un ejemplo son las redes de neuronas del cerebro. En estas redes adaptativas la propia topología emerge como consecuencia de una autoorganización del sistema. Para conocer mejor cómo pueden emerger espontáneamente las propiedades comúnmente observadas en redes reales, hemos estudiado el comportamiento de sistemas que evolucionan según reglas adaptativas locales con base empírica. Nuestros resultados numéricos y analíticos muestran que la autoorganización del sistema da lugar a dos de las propiedades más universales de las redes complejas: a escala mesoscópica, la aparición de una estructura de comunidades, y, a escala macroscópica, la existencia de una ley de potencias en la distribución de las interacciones en la red. El hecho de que estas propiedades aparecen en dos modelos con leyes de evolución cuantitativamente distintas que siguen unos mismos principios adaptativos sugiere que estamos ante un fenómeno que puede ser muy general, y estar en el origen de estas propiedades en sistemas reales. En segundo lugar, proponemos una medida que permite clasificar los elementos de una red compleja en función de su relevancia para el mantenimiento de dinámicas colectivas. En concreto, estudiamos la vulnerabilidad de los distintos elementos de una red frente a perturbaciones o grandes fluctuaciones, entendida como una medida del impacto que estos acontecimientos externos tienen en la interrupción de una dinámica colectiva. Los resultados que se obtienen indican que la vulnerabilidad dinámica es sobre todo dependiente de propiedades locales, por tanto nuestras conclusiones abarcan diferentes topologías, y muestran la existencia de una dependencia no trivial entre la vulnerabilidad y la conectividad de los elementos de una red. Finalmente, proponemos una estrategia de imposición de una dinámica objetivo genérica en una red dada e investigamos su validez en redes con diversas topologías que mantienen regímenes dinámicos turbulentos. Se obtiene como resultado que las redes heterogéneas (y la amplia mayora de las redes reales estudiadas lo son) son las más adecuadas para nuestra estrategia de targeting de dinámicas deseadas, siendo la estrategia muy efectiva incluso en caso de disponer de un conocimiento muy imperfecto de la topología de la red. Aparte de la relevancia teórica para la comprensión de fenómenos colectivos en sistemas complejos, los métodos y resultados propuestos podrán dar lugar a aplicaciones en sistemas experimentales y tecnológicos, como por ejemplo los sistemas neuronales in vitro, el sistema nervioso central (en el estudio de actividades síncronas de carácter patológico), las redes eléctricas o los sistemas de comunicaciones. ABSTRACT The time evolution of an ensemble of dynamical systems coupled through an irregular interaction scheme gives rise to dynamics of great of complexity and emergent phenomena that cannot be predicted from the properties of the individual systems. The main objective of this thesis is precisely to increase our understanding of the interplay between the interaction topology and the collective dynamics that a complex network can support. This is a very broad subject, so in this thesis we will limit ourselves to the study of three relevant problems that have strong connections among them. First, it is a well-known fact that in many natural and manmade systems that can be represented as complex networks the topology is not static; rather, it depends on the dynamics taking place on the network (as it happens, for instance, in the neuronal networks in the brain). In these adaptive networks the topology itself emerges from the self-organization in the system. To better understand how the properties that are commonly observed in real networks spontaneously emerge, we have studied the behavior of systems that evolve according to local adaptive rules that are empirically motivated. Our numerical and analytical results show that self-organization brings about two of the most universally found properties in complex networks: at the mesoscopic scale, the appearance of a community structure, and, at the macroscopic scale, the existence of a power law in the weight distribution of the network interactions. The fact that these properties show up in two models with quantitatively different mechanisms that follow the same general adaptive principles suggests that our results may be generalized to other systems as well, and they may be behind the origin of these properties in some real systems. We also propose a new measure that provides a ranking of the elements in a network in terms of their relevance for the maintenance of collective dynamics. Specifically, we study the vulnerability of the elements under perturbations or large fluctuations, interpreted as a measure of the impact these external events have on the disruption of collective motion. Our results suggest that the dynamic vulnerability measure depends largely on local properties (our conclusions thus being valid for different topologies) and they show a non-trivial dependence of the vulnerability on the connectivity of the network elements. Finally, we propose a strategy for the imposition of generic goal dynamics on a given network, and we explore its performance in networks with different topologies that support turbulent dynamical regimes. It turns out that heterogeneous networks (and most real networks that have been studied belong in this category) are the most suitable for our strategy for the targeting of desired dynamics, the strategy being very effective even when the knowledge on the network topology is far from accurate. Aside from their theoretical relevance for the understanding of collective phenomena in complex systems, the methods and results here discussed might lead to applications in experimental and technological systems, such as in vitro neuronal systems, the central nervous system (where pathological synchronous activity sometimes occurs), communication systems or power grids.
Resumo:
In this work, various turbulent solutions of the two-dimensional (2D) and three-dimensional compressible Reynolds averaged Navier?Stokes equations are analyzed using global stability theory. This analysis is motivated by the onset of flow unsteadiness (Hopf bifurcation) for transonic buffet conditions where moderately high Reynolds numbers and compressible effects must be considered. The buffet phenomenon involves a complex interaction between the separated flow and a shock wave. The efficient numerical methodology presented in this paper predicts the critical parameters, namely, the angle of attack and Mach and Reynolds numbers beyond which the onset of flow unsteadiness appears. The geometry, a NACA0012 profile, and flow parameters selected reproduce situations of practical interest for aeronautical applications. The numerical computation is performed in three steps. First, a steady baseflow solution is obtained; second, the Jacobian matrix for the RANS equations based on a finite volume discretization is computed; and finally, the generalized eigenvalue problem is derived when the baseflow is linearly perturbed. The methodology is validated predicting the 2D Hopf bifurcation for a circular cylinder under laminar flow condition. This benchmark shows good agreement with the previous published computations and experimental data. In the transonic buffet case, the baseflow is computed using the Spalart?Allmaras turbulence model and represents a mean flow where the high frequency content and length scales of the order of the shear-layer thickness have been averaged. The lower frequency content is assumed to be decoupled from the high frequencies, thus allowing a stability analysis to be performed on the low frequency range. In addition, results of the corresponding adjoint problem and the sensitivity map are provided for the first time for the buffet problem. Finally, an extruded three-dimensional geometry of the NACA0012 airfoil, where all velocity components are considered, was also analyzed as a Triglobal stability case, and the outcoming results were compared to the previous 2D limited model, confirming that the buffet onset is well detected.
Resumo:
At head of title: SSD-TDR-63-78. Report no. TDR-169 (3230-12)TR-3.
Resumo:
A novel framework for modelling biomolecular systems at multiple scales in space and time simultaneously is described. The atomistic molecular dynamics representation is smoothly connected with a statistical continuum hydrodynamics description. The system behaves correctly at the limits of pure molecular dynamics (hydrodynamics) and at the intermediate regimes when the atoms move partly as atomistic particles, and at the same time follow the hydrodynamic flows. The corresponding contributions are controlled by a parameter, which is defined as an arbitrary function of space and time, thus, allowing an effective separation of the atomistic 'core' and continuum 'environment'. To fill the scale gap between the atomistic and the continuum representations our special purpose computer for molecular dynamics, MDGRAPE-4, as well as GPU-based computing were used for developing the framework. These hardware developments also include interactive molecular dynamics simulations that allow intervention of the modelling through force-feedback devices.
Resumo:
Mathematical Subject Classification 2010: 35R11, 42A38, 26A33, 33E12.