977 resultados para Infrared spectral
Resumo:
A detalied study of the maonthly Convery river flows at the krishna raja sagara (KRS) reservoir is carried out by using the techniques of spectral analysis. The correlogram and power spectrum ate platted and used to identify the peridiocities inherent in the monthly inflows. The statistical significance of these periodicities is tested. Apart from the periodiocities at 12 months and 6 months, a significant of periodicity of 4 month was also observed in the monthly inflows. The analysis prepares ground for developing an appropriate stochastic model for the item series of the monthly flows.
Resumo:
The thin films of Cu2ZnSnS4 (CZTS) were grown by co-sputtering further the structural, optical and electrical properties were analyzed and confirmed the CZTS phase formation. The photo response of CZTS in near IR photodectection has been demonstrated. The detector response was measured employing both the IR lamp and IR laser illuminations. The calculated growth and decay constants were 130 m sec and 700 m sec followed by the slower components upon lamp illumination. The external quantum efficiency of 15%, responsivity of 13 AW(-1) makes CZTS a suitable candidate for the IR photodectection.
Resumo:
In this manuscript, rotational spectra of four new isotopologues of the S-H center dot center dot center dot pi bonded C2H4 center dot center dot center dot H2S complex, i.e., C2D4 center dot center dot center dot H2S, C2D4 center dot center dot center dot D2S, C2D4 center dot center dot center dot HDS, and (CCH4)-C-13 center dot center dot center dot H2S have been reported and analyzed. All isotopologues except C2D4 center dot center dot center dot HDS show a four line pattern whereas a doubling of the transition frequencies was observed for C2D4 center dot center dot center dot HDS. These results together with our previous report on the title complex M. Goswami, P. K. Mandal, D. J. Ramdass, and E. Arunan, Chem. Phys. Lett. 393(1-3), 22-27 (2004)] confirm that both subunits (C2H4 and H2S) are involved in large amplitude motions leading to a splitting of each rotational transition to a quartet. Further, the results also confirm that the motions which are responsible for the observed splittings involve both monomers. Molecular symmetry group analysis, considering the interchange of equivalent H atoms in H2S and C2H4 could explain the observed four line pattern and their intensities in the microwave spectrum. In addition, hydride stretching fundamentals of the complex were measured using coherence-converted population transfer Fourier Transform Microwave-infrared (IR-MW double resonance) experiments in the S-H and C-H stretch regions. Changes in the tunneling splittings upon vibrational excitation are consistent with the isotopic dependence of pure rotational transitions. A complexation shift of 2.7-6.5 cm(-1) has been observed in the two fundamental S-H stretching modes of the H2S monomer in the complex. Vibrational pre-dissociation in the bound S-H stretch has been detected whereas the instrument-limited line-shapes in other S-H and C-H stretches indicate slower pre-dissociation rate. Some local perturbations in the vibrational spectra have been observed. Two combination bands have been observed corresponding to both the S-H stretching fundamentals and what appears to be the intermolecular stretching mode at 55 cm(-1). The tunneling splitting involved in the rotation of C2H4 unit has been deduced to be 1.5 GHz from the IR-MW results. In addition, ab initio barrier heights derived for different motions of the monomers support the experimental results and provide further insight into the motions causing the splitting. (C) 2013 AIP Publishing LLC.
Resumo:
HgSe and Hg0.5Cd0.5Se quantum dos (QDs) are synthesized at room temperature by a novel liquid-liquid interface method and their photodetection properties in the near-IR region are investigated. The photodetection properties of our Te-free systems are found to be comparable to those of the previously reported high performance QD vis-IR detectors including HgTe. The present synthesis indicates the cost-effectiveness of selenium based IR detectors owing to the abundance and lower toxicity of selenium compared to tellurium.
Resumo:
Ellipsometric measurements in a wide spectral range (from 0.05 to 6.5 eV) have been carried out on the organic semiconducting polymer, poly2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylene-vinylene] (MDMO-PPV), in both undoped and doped states. The real and imaginary parts of the dielectric function and the refractive index are determined accurately, provided that the layer thickness is measured independently. After doping, the optical properties show the presence of new peaks, which could be well-resolved by spectroscopic ellipsometry. Also for the doped material, the complex refractive index, with respect to the dielectric function, has been determined. The broadening of the optical transitions is due to the delocalization of polarons at higher doping level. The detailed information about the dielectric function as well as refractive index function obtained by spectroscopic ellipsometry allows not only qualitative but also quantitative description of the optical properties of the undoped/doped polymer. For the direct characterization of the optical properties of MDMO-PPV, ellipsometry turns out to be advantageous compared to conventional reflection and transmission measurements.
Resumo:
In this paper, we report the gas phase infrared spectra of fluorene and its methylated derivatives using a heated multipass cell and argon as a carrier gas. The observed spectra in the 4000-400 cm(-1) range have been fitted using the modified scaled quantum mechanical force field (SQMFF) calculation with the 6-311G** basis. The advantage of using the modified SQMFF method is that it scales the force constants to find the best fit to the observed spectral lines by minimizing the fitting error. In this way we are able to assign all the observed fundamental bands in the spectra. With consecutive methyl substitutions two sets of bands are found to shift in a systematic way. The set of four aromatic C-H stretching vibrations around 3000 cm(-1) shifts toward lower frequencies while the single most intense aromatic C-H out-of-plane bending mode around 750 cm(-1) shifts toward higher frequencies. The reason for shifting of aromatic C-H stretching frequency toward lower wave numbers with gradual methyl substitution has been attributed to the lengthening of the C-H bonds due to the +I effect of the methyl groups to the ring current as revealed from the calculations. While the unexpected shifting of the aromatic C-H out-of-plane bend toward higher wave numbers with increasing methyl substitution is ascribed to the lowering of the number of adjacent aromatic C-H bonds on the plane of the benzene ring with gradual methyl substitutions. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
A review of high operating temperature (HOT) infrared (IR) photon detector technology vis-a-vis material requirements, device design and state of the art achieved is presented in this article. The HOT photon detector concept offers the promise of operation at temperatures above 120 K to near room temperature. Advantages are reduction in system size, weight, cost and increase in system reliability. A theoretical study of the thermal generation-recombination (g-r) processes such as Auger and defect related Shockley Read Hall (SRH) recombination responsible for increasing dark current in HgCdTe detectors is presented. Results of theoretical analysis are used to evaluate performance of long wavelength (LW) and mid wavelength (MW) IR detectors at high operating temperatures. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Variable Endmember Constrained Least Square (VECLS) technique is proposed to account endmember variability in the linear mixture model by incorporating the variance for each class, the signals of which varies from pixel to pixel due to change in urban land cover (LC) structures. VECLS is first tested with a computer simulated three class endmember considering four bands having small, medium and large variability with three different spatial resolutions. The technique is next validated with real datasets of IKONOS, Landsat ETM+ and MODIS. The results show that correlation between actual and estimated proportion is higher by an average of 0.25 for the artificial datasets compared to a situation where variability is not considered. With IKONOS, Landsat ETM+ and MODIS data, the average correlation increased by 0.15 for 2 and 3 classes and by 0.19 for 4 classes, when compared to single endmember per class. (C) 2013 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
Aqueous dispersions of graphene oxide (GO) exhibit strong pH-dependent fluorescence in the visible that originates, in part, from the oxygenated functionalities present. Here we examine the spectral migration on nanosecond time-scales of the pH dependent features in the fluorescence spectra. We show, from time-resolved emission spectra (TRES) constructed from the wavelength dependent fluorescence decay curves, that the migration is associated with excited state proton transfer. Both `intramolecular' and `intermolecular' transfer involving the quasi-molecular oxygenated aromatic fragments are observed. As a prerequisite to the time-resolved measurements, we have correlated the changes in the steady state fluorescence spectra with the sequence of dissociation events that occur in GO dispersions at different values of pH.
Resumo:
Despite being a particularly good emitter, use of divalent Eu has been seriously limited. This is because severe reducing environments or special hosts are needed during synthesis of divalent Eu containing phosphors. In this work we stabilize Eu in its 2+ state (in CaAl2O4) using an open-air solution combustion reaction. The impact of fuel (F) to oxidizer (O) molar ratios (F/O = 0.5-2.0) on luminescence properties is explored. Chromaticity of Eu:CaAl2O4 depends sensitively on the F/O ratio. In general, higher F/O inhibits Eu3+ and promotes Eu2+ formation, which in turn improves the quality of the blue phosphor. EPR spectra show inhomogeneous broadening effects with the increase in F/O ratio, which suggests that disorder creation is promoted when F/O is increase. This is also confirmed by an increase in emission line width in PL spectra, when F/O is increased. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
How does the presence of plastic active dendrites in a pyramidal neuron alter its spike initiation dynamics? To answer this question, we measured the spike-triggered average (STA) from experimentally constrained, conductance-based hippocampal neuronal models of various morphological complexities. We transformed the STA computed from these models to the spectral and the spectrotemporal domains and found that the spike initiation dynamics exhibited temporally localized selectivity to a characteristic frequency. In the presence of the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, the STA characteristic frequency strongly correlated with the subthreshold resonance frequency in the theta frequency range. Increases in HCN channel density or in input variance increased the STA characteristic frequency and its selectivity strength. In the absence of HCN channels, the STA exhibited weak delta frequency selectivity and the characteristic frequency was related to the repolarization dynamics of the action potentials and the recovery kinetics of sodium channels from inactivation. Comparison of STA obtained with inputs at various dendritic locations revealed that nonspiking and spiking dendrites increased and reduced the spectrotemporal integration window of the STA with increasing distance from the soma as direct consequences of passive filtering and dendritic spike initiation, respectively. Finally, the presence of HCN channels set the STA characteristic frequency in the theta range across the somatodendritic arbor and specific STA measurements were strongly related to equivalent transfer-impedance-related measurements. Our results identify explicit roles for plastic active dendrites in neural coding and strongly recommend a dynamically reconfigurable multi-STA model to characterize location-dependent input feature selectivity in pyramidal neurons.
Resumo:
Granger causality is increasingly being applied to multi-electrode neurophysiological and functional imaging data to characterize directional interactions between neurons and brain regions. For a multivariate dataset, one might be interested in different subsets of the recorded neurons or brain regions. According to the current estimation framework, for each subset, one conducts a separate autoregressive model fitting process, introducing the potential for unwanted variability and uncertainty. In this paper, we propose a multivariate framework for estimating Granger causality. It is based on spectral density matrix factorization and offers the advantage that the estimation of such a matrix needs to be done only once for the entire multivariate dataset. For any subset of recorded data, Granger causality can be calculated through factorizing the appropriate submatrix of the overall spectral density matrix.
Resumo:
A droplet introduced in an external convective flow field exhibits significant multimodal shape oscillations depending upon the intensity of the aerodynamic forcing. In this paper, a theoretical model describing the temporal evolution of normal modes of the droplet shape is developed. The fluid is assumed to be weakly viscous and Newtonian. The convective flow velocity, which is assumed to be incompressible and inviscid, is incorporated in the model through the normal stress condition at the droplet surface and the equation of motion governing the dynamics of each mode is derived. The coupling between the external flow and the droplet is approximated to be a one-way process, i.e., the external flow perturbations effect the droplet shape oscillations and the droplet oscillation itself does not influence the external flow characteristics. The shape oscillations of the droplet with different fluid properties under different unsteady flow fields were simulated. For a pulsatile external flow, the frequency spectra of the normal modes of the droplet revealed a dominant response at the resonant frequency, in addition to the driving frequency and the corresponding harmonics. At driving frequencies sufficiently different from the resonant frequency of the prolate-oblate oscillation mode of the droplet, the oscillations are stable. But at resonance the oscillation amplitude grows in time leading to breakup depending upon the fluid viscosity. A line vortex advecting past the droplet, simulated as an isotropic jump in the far field velocity, leads to the resonant excitation of the droplet shape modes if and only if the time taken by the vortex to cross the droplet is less than the resonant period of the P-2 mode of the droplet. A train of two vortices interacting with the droplet is also analysed. It shows clearly that the time instant of introduction of the second vortex with respect to the droplet shape oscillation cycle is crucial in determining the amplitude of oscillation. (C) 2014 AIP Publishing LLC.
Resumo:
Semiconducting Cu3BiS3 (CBS) thin films were deposited by co-evaporation of Cu, Bi elemental metallic precursors, with in situ sulphurisation, using a quartz effusion cell. Cu3BiS3 thin films were structurally characterized by XRD and FE-SEM. The chemical bonding of the ions was examined by XPS. As deposited films were demonstrated for metal-semiconductor-metal near IR photodectection under lamp and laser illuminations. The photo current amplified to three orders and two orders of magnitude upon the IR lamp and 60 m W cm(-2) 1064 nm IR laser illuminations, respectively. Larger grains, made up of nano needle bunches aided the transport of carriers. Transport properties were explained based on the trap assisted space charge conduction mechanism. Steady state detector parameters like responsivity varied from 1.04 AW(-1) at 60 m Wcm(-2) to 0.22 AW(-1) at 20 m Wcm(-2). Detector sensitivity of 295 was found to be promising and further could be tuned for better responsivity and efficiency in utilization of near infra-red photodetector. (C) 2014 AIP Publishing LLC.