908 resultados para Inertia (Mechanics).
Resumo:
"ICOMP-92-02; CMOTT-92-02."
Resumo:
Nos. [1]-240, 1882-91, form v. 1-13; nos. 241-310, 1892-Oct. 1897, have no volume numbers; nos. 311-336, Nov. 1897-1899, form v. 16, nos. 11-12, v. 17-18, no. 11.
Resumo:
Vol. 3 and 4 form the author's Treatise on analytical mechanics.
Resumo:
Title varies slightly.
Resumo:
Mode of access: Internet.
Resumo:
This paper reviews the recent developments in the mechanics of superplasticity and its applications in industrial practice. After introducing the phenomena of superplasticity, the basic experiments for determining material deformation behavior and related parameters, and constructing superplastic constitutive equations, are reviewed. Finite element related formulations and techniques for simulating superplastic forming are discussed, together with some practical applications. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The Lattice Solid Model has been used successfully as a virtual laboratory to simulate fracturing of rocks, the dynamics of faults, earthquakes and gouge processes. However, results from those simulations show that in order to make the next step towards more realistic experiments it will be necessary to use models containing a significantly larger number of particles than current models. Thus, those simulations will require a greatly increased amount of computational resources. Whereas the computing power provided by single processors can be expected to increase according to Moore's law, i.e., to double every 18-24 months, parallel computers can provide significantly larger computing power today. In order to make this computing power available for the simulation of the microphysics of earthquakes, a parallel version of the Lattice Solid Model has been implemented. Benchmarks using large models with several millions of particles have shown that the parallel implementation of the Lattice Solid Model can achieve a high parallel-efficiency of about 80% for large numbers of processors on different computer architectures.
Resumo:
When a gas is introduced at high velocity through a nozzle into a packed bed, it creates a raceway in the packed bed. It has been found that the raceway size is larger when it is formed by decreasing the gas velocity from its highest value than when it is formed by increasing the gas velocity. This phenomenon is known as raceway hysteresis. A hypothesis has been oroposed to explain the hysteresis phenomenon based on a force-balance approach which includes frictional, bed-weight, and pressure forces. According to this hypothesis, the frictional force acts in different directions when the raceway is expanding and contracting. In this article, the entire packed bed has been divided into radial and Cartesian co-ordinate systems, and the forces acting on the raceway have been solved analytically for a simplified one-dimensional case. Based on the force-balance approach, a general equation has been obtained to predict the diameter of the raceway for increasing And decreasing velocities. A reasonable agreement has been found between the theoretical predictions and experimental observations. The model has also been compared with published experimental and plant data. The hysteresis mechanism in the packed beds can be described reasonably by taking into consideration the direction of frictional forces for the increasing- and decreasin-velocity cases. The effects of the particleshape factor and void fraction on the raceway hysteresis are examined.
Resumo:
Complex numbers appear in the Hilbert space formulation of quantum mechanics, but not in the formulation in phase space. Quantum symmetries are described by complex, unitary or antiunitary operators defining ray representations in Hilbert space, whereas in phase space they are described by real, true representations. Equivalence of the formulations requires that the former representations can be obtained from the latter and vice versa. Examples are given. Equivalence of the two formulations also requires that complex superpositions of state vectors can be described in the phase space formulation, and it is shown that this leads to a nonlinear superposition principle for orthogonal, pure-state Wigner functions. It is concluded that the use of complex numbers in quantum mechanics can be regarded as a computational device to simplify calculations, as in all other applications of mathematics to physical phenomena.
Resumo:
We are using polymer templates to grow artificial artery grafts in vivo for the replacement of diseased blood vessels. We have previously shown that adhesion of macrophages to the template starts the graft formation. We present a study of the mechanics of macrophage adhesion to these templates on a single cell and single bond level with optical tweezers. For whole cells, in vitro cell adhesion densities decreased significantly from polymer templates polyethylene to silicone to Tygon (167, 135, and 65 cells/mm(2)). These cell densities were correlated with the graft formation success rate (50%, 25%, and 0%). Single-bond rupture forces at a loading rate of 450 pN/s were quantified by adhesion of trapped 2-mm spheres to macrophages. Rupture force distributions were dominated by nonspecific adhesion (forces, < 40 pN). On polystyrene, preadsorption of fibronectin or presence of serum proteins in the cell medium significantly enhanced adhesion strength from a mean rupture force of 20 pN to 28 pN or 33 pN, respectively. The enhancement of adhesion by fibronectin and serum is additive (mean rupture force of 43 pN). The fraction of specific binding forces in the presence of serum was similar for polystyrene and polymethyl-methacrylate, but specific binding forces were not observed for silica. Again, we found correlation to in vivo experiments, where the density of adherent cells is higher on polystyrene than on silica templates, and can be further enhanced by fibronectin adsorption. These findings show that in vitro adhesion testing can be used for template optimization and to substitute for in-vivo experiments.
Resumo:
This paper reports a free vibration analysis of thick plates with rounded corners subject to a free, simply-supported or clamped boundary condition. The plate perimeter is defined by a super elliptic function with a power defining the shape ranging from an ellipse to a rectangle. To incorporate transverse shear deformation, the Reddy third-order plate theory is employed. The energy integrals incorporating shear deformation and rotary inertia are formulated and the p-Ritz procedures are used to derive the governing eigenvalue equation. Numerical examples for plates with different shapes and boundary conditions are solved and their frequency parameters, where possible, are compared with known results. Parametric studies are carried out to show the sensitivities of frequency parameters by varying the geometry, fibre stacking sequence, and boundary condition. (C) 1999 Academic Press.