922 resultados para In vivo gene expression
Resumo:
Loss of chromosome 10 represents the most common cytogenetic abnormality in high grade gliomas (glioblastoma multiforme). To identify genes involved in the malignant progression of human gliomas, a subtractive hybridization was performed between a tumorigenic glioblastoma cell line (LG11) and a nontumorgenic hybrid cell (LG11.3) containing an introduced chromosome 10. LG11 mRNA was subtracted from LG11.3 cDNA to produce cDNA probes enriched for sequences whose expression differs quantitatively from the parental tumorigenic cells. Both known and novel sequences were identified as a result of the subtraction. Northern blot analysis was then used to confirm differential expression of several subtracted clones. One novel clone, clone 17, identified a 2.6 kb message that showed a consistent two to four fold increase in expression in the LG11.3 nontumorigenic cells. Clone 17 (340 bp) was used successfully to screen for a near full-length version, RIG (regulated in glioma), which was 2,569 bp in size. The RIG cDNA sequence showed homology to clone 17 and to an anonymous EST (IB666), but to no previously identified genes. This screening effort also identified several independent clones representing novel sequences, most of which failed to show increased expression in the nontumorigenic GBM cells. Tissue distribution studies of RIG indicated highest levels of expression in human brain with appreciably lower levels in heart and lung. In vitro transcription and translation experiments demonstrated the ability of RIG to direct the synthesis of a 13 kD protein product. However, open reading frame analysis revealed no identify with previously described motifs or any known proteins. Using a combination of somatic cell hybrid panels and in situ hybridization, the RIG gene was mapped to chromosome 11p14-11p15. Further study of RIG and related gene products may provide insight into the negative regulation of glial oncogenesis. ^
Resumo:
The goal of the present work was to identify and characterize gene sequences that are preferentially expressed in CML in an effort to better understand the molecular basis of the disease. As high abundance mRNAs generally encode proteins that are phenotypically characteristic of cells, positive-negative screening of a CML cDNA library was used to identify cDNA clones containing sequences preferentially transcribed in CML. One cDNA sequence that fulfilled this criterion, C-A3, has been characterized in some detail. It represents a small mRNA ((TURN)496 nucleotides) that is highly abundant ((TURN)2% of the poly(A('+))RNA) in cells from the chronic phase of CML. In situ hybridization to whole cells indicates the principal leukocytes that express C-A3 sequences are eosinophils, basophils and immature myelocytes. Surprisingly, CML patients with high numbers of myeloblasts do not have an abundance of C-A3 transcripts, although transcript levels remain elevated in patients with lymphoblasts. In AML, high transcript levels are only found sporadically and occasionally different sized transcripts can be detected. Sequences from the 3' end of the C-A3 message are present in 2-5 copies per haploid genome. The 3' end of C-A3 localizes to bands 8q21.1 and 8q23 by in situ chromosomal hybridization. This is a region that is often involved in hematopoietic malignancies. Restriction digests of human genomic DNA show a correlation between the presence of a 2.3 kb Hind III fragment and certain types of leukemia. All of the leukemic DNAs tested had this fragment. In comparison, only one of five normal DNAs had a band this size. Analysis of the nucleotide sequence indicates that C-A3 probably encodes a small, hydrophobic peptide which may be part of a larger protein. ^
Resumo:
BACKGROUND In Parkinson's disease (PD), bradykinesia, or slowness of movement, only appears after a large striatal dopamine depletion. Compensatory mechanisms probably play a role in this delayed appearance of symptoms. OBJECTIVE Our hypothesis is that the striatal direct and indirect pathways participate in these compensatory mechanisms. METHODS We used the unilateral 6-hydroxydopamine (6-OHDA) rat model of PD and control animals. Four weeks after the lesion, the spontaneous locomotor activity of the rats was measured and then the animals were killed and their brain extracted. We quantified the mRNA expression of markers of the striatal direct and indirect pathways as well as the nigral expression of dopamine transporter (DAT) and tyrosine hydroxylase (TH) mRNA. We also carried out an immunohistochemistry for the striatal TH protein expression. RESULTS As expected, the unilateral 6-OHDA rats presented a tendency to an ipsilateral head turning and a low locomotor velocity. In 6-OHDA rats only, we observed a significant and positive correlation between locomotor velocity and both D1-class dopamine receptor (D1R) (direct pathway) and enkephalin (ENK) (indirect pathway) mRNA in the lesioned striatum, as well as between D1R and ENK mRNA. CONCLUSIONS Our results demonstrate a strong relationship between both direct and indirect pathways and spontaneous locomotor activity in the parkinsonian rat model. We suggest a synergy between both pathways which could play a role in compensatory mechanisms and may contribute to the delayed appearance of bradykinesia in PD.
Resumo:
Expansins are members of a multigene family of extracellular proteins, which increase cell wall extensibility in vitro and thus are thought to be involved in cell expansion. The major significance of the presence of this large gene family may be that distinctly expressed genes can independently regulate cell expansion in place and time. Here we report on LeExp9, a new expansin gene from tomato, and compare its expression in the shoot tip with that of LeExp2 and LeExp18. LeExp18 gene is expressed in very young tissues of the tomato shoot apex and the transcript levels are upregulated in the incipient primordium. LeExp2 mRNA accumulated in more mature tissues and transcript levels correlated with cell elongation in the elongation zone. In situ hybridization experiments showed a uniform distribution of LeExp9 mRNA in submeristematic tissues. When gibberellin-deficient mutant tomatoes that lacked elongation of the internodes were treated with gibberellin, the phenotypic rescue was correlated with an increase in LeExp9 and LeExp2, but not LeExp18 levels. We propose that the three expansins define three distinct growing zones in the shoot tip. In the meristem proper, gibberellin-independent LeExp18 mediates the cell expansion that accompanies cell division. In the submeristematic zone, LeExp9 mediates cell expansion at a time that cell division comes to a halt. LeExp9 expression requires gibberellin but the hormone is not normally limiting. Finally, LeExp2 mediates cell elongation in young stem tissue. LeExp2 expression is limited by the available gibberellin. These data suggest that regulation of cell wall extensibility is controlled, at least in part, by differential regulation of expansin genes.
Resumo:
Genome-wide microarrays have suggested that Emdogain regulates TGF-β target genes in gingival and palatal fibroblasts. However, definitive support for this contention and the extent to which TGF-β signaling contributes to the effects of Emdogain has remained elusive. We therefore studied the role of the TGF-β receptor I (TGF-βRI) kinase to mediate the effect of Emdogain on palatal fibroblasts. Palatal fibroblasts were exposed to Emdogain with and without the inhibitor for TGF-βRI kinase, SB431542. Emdogain caused 39 coding genes to be differentially expressed in palatal fibroblasts by microarray analysis (p<0.05; >10-fold). Importantly, in the presence of the TGF-βRI kinase inhibitor SB431542, Emdogain failed to cause any significant changes in gene expression. Consistent with this mechanism, three independent TGF-βRI kinase inhibitors and a TGF-β neutralizing antibody abrogated the increased expression of IL-11, a selected Emdogain target gene. The MAPK inhibitors SB203580 and U0126 lowered the impact of Emdogain on IL-11 expression. The data support that TGF-βRI kinase activity is necessary to mediate the effects of Emdogain on gene expression in vitro.
Resumo:
The molecular regulation of horn growth in ruminants is still poorly understood. To investigate this process, we collected 1019 hornless (polled) animals from different cattle breeds. High-density SNP genotyping confirmed the presence of two different polled associated haplotypes in Simmental and Holstein cattle co-localized on BTA 1. We refined the critical region of the Simmental polled mutation to 212 kb and identified an overlapping region of 932 kb containing the Holstein polled mutation. Subsequently, whole genome sequencing of polled Simmental and Holstein cows was used to determine polled associated genomic variants. By genotyping larger cohorts of animals with known horn status we found a single perfectly associated insertion/deletion variant in Simmental and other beef cattle confirming the recently published possible Celtic polled mutation. We identified a total of 182 sequence variants as candidate mutations for polledness in Holstein cattle, including an 80 kb genomic duplication and three SNPs reported before. For the first time we showed that hornless cattle with scurs are obligate heterozygous for one of the polled mutations. This is in contrast to published complex inheritance models for the bovine scurs phenotype. Studying differential expression of the annotated genes and loci within the mapped region on BTA 1 revealed a locus (LOC100848215), known in cow and buffalo only, which is higher expressed in fetal tissue of wildtype horn buds compared to tissue of polled fetuses. This implicates that the presence of this long noncoding RNA is a prerequisite for horn bud formation. In addition, both transcripts associated with polledness in goat and sheep (FOXL2 and RXFP2), show an overexpression in horn buds confirming their importance during horn development in cattle.
Resumo:
Gene therapy may represent a promising alternative strategy for cardiac muscle regeneration. In vivo electroporation, a physical method of gene transfer, has recently evolved as an efficient method for gene transfer. Here, we describe two protocols involving in vivo electroporation for gene transfer to the beating heart.
Resumo:
Acute psychosocial stress stimulates transient increases in circulating pro-inflammatory plasma cytokines, but little is known about stress effects on anti-inflammatory cytokines or underlying mechanisms. We investigated the stress kinetics and interrelations of pro- and anti-inflammatory measures on the transcriptional and protein level. Forty-five healthy men were randomly assigned to either a stress or control group. While the stress group underwent an acute psychosocial stress task, the second group participated in a non-stress control condition. We repeatedly measured before and up to 120min after stress DNA binding activity of the pro-inflammatory transcription factor NF-κB (NF-κB-BA) in peripheral blood mononuclear cells, whole-blood mRNA levels of NF-κB, its inhibitor IκBα, and of the pro-inflammatory cytokines interleukin (IL)-1ß and IL-6, and the anti-inflammatory cytokine IL-10. We also repeatedly measured plasma levels of IL-1ß, IL-6, and IL-10. Compared to non-stress, acute stress induced significant and rapid increases in NF-κB-BA and delayed increases in plasma IL-6 and mRNA of IL-1ß, IL-6, and IκBα (p's<.045). In the stress group, significant increases over time were also observed for NF-κB mRNA and plasma IL-1ß and IL-10 (p's<.055). NF-κB-BA correlated significantly with mRNA of IL-1β (r=.52, p=.002), NF-κB (r=.48, p=.004), and IκBα (r=.42, p=.013), and marginally with IL-6 mRNA (r=.31, p=.11). Plasma cytokines did not relate to NF-κB-BA or mRNA levels of the respective cytokines. Our data suggest that stress induces increases in NF-κB-BA that relate to subsequent mRNA expression of pro-inflammatory, but not anti-inflammatory cytokines, and of regulatory-cytoplasmic-proteins. The stress-induced increases in plasma cytokines do not seem to derive from de novo synthesis in circulating blood cells.
Resumo:
Background The enoyl-acyl carrier protein (ACP) reductase enzyme (FabI) is the target for a series of antimicrobial agents including novel compounds in clinical trial and the biocide triclosan. Mutations in fabI and heterodiploidy for fabI have been shown to confer resistance in S. aureus strains in a previous study. Here we further determined the fabI upstream sequence of a selection of these strains and the gene expression levels in strains with promoter region mutations. Results Mutations in the fabI promoter were found in 18% of triclosan resistant clinical isolates, regardless the previously identified molecular mechanism conferring resistance. Although not significant, a higher rate of promoter mutations were found in strains without previously described mechanisms of resistance. Some of the mutations identified in the clinical isolates were also detected in a series of laboratory mutants. Microarray analysis of selected laboratory mutants with fabI promoter region mutations, grown in the absence of triclosan, revealed increased fabI expression in three out of four tested strains. In two of these strains, only few genes other than fabI were upregulated. Consistently with these data, whole genome sequencing of in vitro selected mutants identified only few mutations except the upstream and coding regions of fabI, with the promoter mutation as the most probable cause of fabI overexpression. Importantly the gene expression profiling of clinical isolates containing similar mutations in the fabI promoter also showed, when compared to unrelated non-mutated isolates, a significant up-regulation of fabI. Conclusions In conclusion, we have demonstrated the presence of C34T, T109G, and A101C mutations in the fabI promoter region of strains with fabI up-regulation, both in clinical isolates and/or laboratory mutants. These data provide further observations linking mutations upstream fabI with up-regulated expression of the fabI gene.
Resumo:
Little is known about stage-specific gene regulation in Plasmodium parasites, in particular the liver stage of development. We have previously described in the Plasmodium berghei rodent model, a liver stage-specific (lisp2) gene promoter region, in vitro. Using a dual luminescence system, we now confirm the stage specificity of this promoter region also in vivo. Furthermore, by substitution and deletion analyses we have extended our in vitro characterization of important elements within the promoter region. Importantly, the dual luminescence system allows analyzing promoter constructs avoiding mouse-consuming cloning procedures of transgenic parasites. This makes extensive mutation and deletion studies a reasonable approach also in the malaria mouse model. Stage-specific expression constructs and parasite lines are extremely valuable tools for research on Plasmodium liver stage biology. Such reporter lines offer a promising opportunity for assessment of liver stage drugs, characterization of genetically attenuated parasites and liver stage-specific vaccines both in vivo and in vitro, and may be key for the generation of inducible systems.
Resumo:
BACKGROUND: Demineralized bone matrix (DBM) is used for the treatment of osseous defects. Conditioned medium from native bone chips can activate transforming growth factor (TGF)-β signaling in mesenchymal cells. The aim of the study was to determine whether processing of native bone into DBM affects the activity of the conditioned medium. METHODS: Porcine cortical bone blocks were subjected to defatting, different concentrations of hydrochloric acid and various temperatures. DBM was lyophilized, ground, and placed into culture medium. Human gingiva and periodontal fibroblasts were exposed to the respective conditioned medium (DBCM). Changes in the expression of TGF-β target genes were determined. RESULTS: DBCM altered the expression of TGF-β target genes, e.g., adrenomedullin, pentraxin 3, KN Motif And Ankyrin Repeat Domains 4, interleukin 11, NADPH oxidase 4, and BTB (POZ) Domain Containing 11, by at least five-fold. The response was observed in fibroblasts from both sources. Defatting lowered the activity of DBCM. The TGF-β receptor type I kinase inhibitor SB431542, but not the inhibitor of bone morphogenetic protein receptor dorsomorphin, blocked the effects of DBCM on gene expression. Moreover, conditioned medium obtained from commercial human DBM modulated the expression of TGF-β target genes. CONCLUSION: The findings suggest that the conditioned medium from demineralized bone matrix can activate TGF-β signaling in oral fibroblasts. KEYWORDS: TGF-beta superfamily proteins; bone; bone substitutes; bone transplantation; conditioned media; freeze drying
Resumo:
PURPOSE Autologous bone is used for augmentation in the course of oral implant placement. Bone grafts release paracrine signals that can modulate mesenchymal cell differentiation in vitro. The detailed genetic response of the bone-derived fibroblasts to these paracrine signals has remained elusive. Paracrine signals accumulate in bone-conditioned medium (BCM) prepared from porcine cortical bone chips. MATERIALS AND METHODS In this study, bone-derived fibroblasts were exposed to BCM followed by a whole genome expression profiling and downstream quantitative reverse transciptase polymerase chain reaction of the most strongly regulated genes. RESULTS The data show that ADM, IL11, IL33, NOX4, PRG4, and PTX3 were differentially expressed in response to BCM in bone-derived fibroblasts. The transforming growth factor beta (TGF-β) receptor 1 antagonist SB431542 blocked the effect of BCM on the expression of the gene panel, except for IL33. CONCLUSION These in vitro results extend existing evidence that cortical bone chips release paracrine signals that provoke a robust genetic response in mesenchymal cells that is not exclusively mediated via the TGF-β receptor. The present data provide further insights into the process of graft consolidation.
Resumo:
BACKGROUND A single non-invasive gene expression profiling (GEP) test (AlloMap®) is often used to discriminate if a heart transplant recipient is at a low risk of acute cellular rejection at time of testing. In a randomized trial, use of the test (a GEP score from 0-40) has been shown to be non-inferior to a routine endomyocardial biopsy for surveillance after heart transplantation in selected low-risk patients with respect to clinical outcomes. Recently, it was suggested that the within-patient variability of consecutive GEP scores may be used to independently predict future clinical events; however, future studies were recommended. Here we performed an analysis of an independent patient population to determine the prognostic utility of within-patient variability of GEP scores in predicting future clinical events. METHODS We defined the GEP score variability as the standard deviation of four GEP scores collected ≥315 days post-transplantation. Of the 737 patients from the Cardiac Allograft Rejection Gene Expression Observational (CARGO) II trial, 36 were assigned to the composite event group (death, re-transplantation or graft failure ≥315 days post-transplantation and within 3 years of the final GEP test) and 55 were assigned to the control group (non-event patients). In this case-controlled study, the performance of GEP score variability to predict future events was evaluated by the area under the receiver operator characteristics curve (AUC ROC). The negative predictive values (NPV) and positive predictive values (PPV) including 95 % confidence intervals (CI) of GEP score variability were calculated. RESULTS The estimated prevalence of events was 17 %. Events occurred at a median of 391 (inter-quartile range 376) days after the final GEP test. The GEP variability AUC ROC for the prediction of a composite event was 0.72 (95 % CI 0.6-0.8). The NPV for GEP score variability of 0.6 was 97 % (95 % CI 91.4-100.0); the PPV for GEP score variability of 1.5 was 35.4 % (95 % CI 13.5-75.8). CONCLUSION In heart transplant recipients, a GEP score variability may be used to predict the probability that a composite event will occur within 3 years after the last GEP score. TRIAL REGISTRATION Clinicaltrials.gov identifier NCT00761787.
Resumo:
FTY720 sequesters lymphocytes in secondary lymphoid organs through effects on sphingosine-1-phosphate (S1P) receptors. However, at higher doses than are required for immunosuppression, FTY720 also functions as an anticancer agent in multiple animal models. Our published work indicates that the anticancer effects of FTY720 do not depend on actions at S1P receptors but instead stem from FTY720s ability to restrict access to extracellular nutrients by down-regulating nutrient transporter proteins. This result was significant because S1P receptor activation is responsible for FTY720s dose-limiting toxicity, bradycardia, that prevents its use in cancer patients. Here, we describe diastereomeric and enantiomeric 3- and 4-C-aryl 2-hydroxymethyl pyrrolidines that are more active than the previously known analogues. Of importance is that these compounds fail to activate S1P1 or S1P3 receptors in vivo but retain inhibitory effects on nutrient transporter proteins and anticancer activity in solid tumor xenograft models. Our studies reaffirm that the anticancer activity of FTY720 does not depend upon S1P receptor activation and uphold the promise of using S1P receptor-inactive azacyclic FTY720 analogues in human cancer patients.
Resumo:
Intravital imaging has revealed that T cells change their migratory behavior during physiological activation inside lymphoid tissue. Yet, it remains less well investigated how the intrinsic migratory capacity of activated T cells is regulated by chemokine receptor levels or other regulatory elements. Here, we used an adjuvant-driven inflammation model to examine how motility patterns corresponded with CCR7, CXCR4, and CXCR5 expression levels on ovalbumin-specific DO11.10 CD4(+) T cells in draining lymph nodes. We found that while CCR7 and CXCR4 surface levels remained essentially unaltered during the first 48-72 h after activation of CD4(+) T cells, their in vitro chemokinetic and directed migratory capacity to the respective ligands, CCL19, CCL21, and CXCL12, was substantially reduced during this time window. Activated T cells recovered from this temporary decrease in motility on day 6 post immunization, coinciding with increased migration to the CXCR5 ligand CXCL13. The transiently impaired CD4(+) T cell motility pattern correlated with increased LFA-1 expression and augmented phosphorylation of the microtubule regulator Stathmin on day 3 post immunization, yet neither microtubule destabilization nor integrin blocking could reverse TCR-imprinted unresponsiveness. Furthermore, protein kinase C (PKC) inhibition did not restore chemotactic activity, ruling out PKC-mediated receptor desensitization as mechanism for reduced migration in activated T cells. Thus, we identify a cell-intrinsic, chemokine receptor level-uncoupled decrease in motility in CD4(+) T cells shortly after activation, coinciding with clonal expansion. The transiently reduced ability to react to chemokinetic and chemotactic stimuli may contribute to the sequestering of activated CD4(+) T cells in reactive peripheral lymph nodes, allowing for integration of costimulatory signals required for full activation.