912 resultados para Impulse response function
Resumo:
Abstract Background HCV is prevalent throughout the world. It is a major cause of chronic liver disease. There is no effective vaccine and the most common therapy, based on Peginterferon, has a success rate of ~50%. The mechanisms underlying viral resistance have not been elucidated but it has been suggested that both host and virus contribute to therapy outcome. Non-structural 5A (NS5A) protein, a critical virus component, is involved in cellular and viral processes. Methods The present study analyzed structural and functional features of 345 sequences of HCV-NS5A genotypes 1 or 3, using in silico tools. Results There was residue type composition and secondary structure differences between the genotypes. In addition, second structural variance were statistical different for each response group in genotype 3. A motif search indicated conserved glycosylation, phosphorylation and myristoylation sites that could be important in structural stabilization and function. Furthermore, a highly conserved integrin ligation site was identified, and could be linked to nuclear forms of NS5A. ProtFun indicated NS5A to have diverse enzymatic and nonenzymatic activities, participating in a great range of cell functions, with statistical difference between genotypes. Conclusion This study presents new insights into the HCV-NS5A. It is the first study that using bioinformatics tools, suggests differences between genotypes and response to therapy that can be related to NS5A protein features. Therefore, it emphasizes the importance of using bioinformatics tools in viral studies. Data acquired herein will aid in clarifying the structure/function of this protein and in the development of antiviral agents.
Resumo:
Information about orthodontic movement of teeth with hypercementosis is scarce. As cementum deposition continues to occur, cementum is expected to change the shape of the root and apex over time, but this has not yet been demonstrated. Nor has it ever been established whether it increases or decreases the prevalence of root resorption during orthodontic treatment. The unique biological function of the interconnected network of cementocytes may play a role in orthodontic movement and its associated root resorptions, but no research has ever been conducted on the topic. Unlike cementum thickness and hypercementosis, root and apex shape has not yet been related to patient age. A study of the precise difference between increased cementum thickness and hypercementosis is warranted. Hypercementosis refers to excessive cementum formation above and beyond the extent necessary to fulfill its normal functions, resulting in abnormal thickening with macroscopic changes in the tooth root, which may require the delivery of forces that are different from conventional mechanics in their intensity, direction and distribution. What are the unique features and specificities involved in moving teeth that present with hypercementosis? Bodily movements would be expected to occur, since inclination might prove difficult to achieve, but would the root resorption index be higher or lower?
Resumo:
Abstract Background Neonatal STZ treatment induces a state of mild hyperglycemia in adult rats that disrupts metabolism and maternal/fetal interactions. The aim of this study was investigate the effect of neonatal STZ treatment on the physical development, behavior, and reproductive function of female Wistar rats from infancy to adulthood. Methods At birth, litters were assigned either to a Control (subcutaneous (s.c.) citrate buffer, n = 10) or STZ group, (streptozotocin (STZ) - 100 mg/kg-sc, n = 6). Blood glucose levels were measured on postnatal days (PND) 35, 84 and 120. In Experiment 1 body weight, length and the appearance of developmental milestones such as eye and vaginal opening were monitored. To assess the relative contribution of the initial and long term effects of STZ treatment this group was subdivided based on blood glucose levels recorded on PND 120: STZ hyperglycemic (between 120 and 300 mg/dl) and STZ normoglycemic (under 120 mg/dl). Behavioral activity was assessed in an open field on PND 21 and 75. In Experiment 2 estrous cyclicity, sexual behavior and circulating gonadotropin, ovarian steroid, and insulin levels were compared between control and STZ-hyperglycemic rats. In all measures the litter was the experimental unit. Parametric data were analyzed using one-way or, where appropriate, two-way ANOVA and significant effects were investigated using Tukey’s post hoc test. Fisher’s exact test was employed when data did not satisfy the assumption of normality e.g. presence of urine and fecal boli on the open field between groups. Statistical significance was set at p < 0.05 for all data. Results As expected neonatal STZ treatment caused hyperglycemia and hypoinsulinemia in adulthood. STZ-treated pups also showed a temporary reduction in growth rate that probably reflected the early loss of circulating insulin. Hyperglycemic rats also exhibited a reduction in locomotor and exploratory behavior in the open field. Mild hyperglycemia did not impair gonadotropin levels or estrous cylicity but ovarian steroid concentrations were altered. Conclusions In female Wistar rats, neonatal STZ treatment impairs growth in infancy and results in mild hyperglycemia/hypoinsulinemia in adulthood that is associated with changes in the response to a novel environment and altered ovarian steroid hormone levels.
Resumo:
Background/Aims: Early life experiences are homeostatic determinants for adult organisms. We evaluated the impact of prenatal immune activation during late gestation on the neuroimmune-endocrine function of adult offspring and its interaction with acute stress. Methods: Pregnant Swiss mice received saline or lipopolysaccharide (LPS) on gestational day 17. Adult male offspring were assigned to the control or restraint stress condition. We analyzed plasmatic corticosterone and catecholamine levels, the monoamine content in the hypothalamus, striatum and frontal cortex, and the sleep-wake cycle before and after acute restraint stress. Results and Conclusion: Offspring from LPS-treated dams had increased baseline norepinephrine levels and potentiated corticosterone secretion after the acute stressor, and no effect was observed on hypothalamic monoamine content or sleep behavior. The offspring of immune-activated dams exhibited impairments in stress-induced serotonergic and dopaminergic alterations in the striatum and frontal cortex. The data demonstrate a distinction between the plasmatic levels of corticosterone in response to acute stress and the hypothalamic monoamine content and sleep patterns. We provide new evidence regarding the influence of immune activation during late gestation on the neuroendocrine homeostasis of offspring.
Resumo:
OBJECTIVE: To investigate the effects of periodontal bacterial lysates on maturation and function of mature monocyte-derived dendritic cells (m-MDDCs) derived from individuals with chronic periodontitis (CP) or healthy periodontal tissue (HP). DESIGN: m-MDDCs derived from peripheral blood monocytes, cultured for 7 days in presence of interleukin (IL)-4 and granulocyte-macrophage colony stimulating factor (GM-CSF), were stimulated with lysates of Streptococcus sanguinis, Prevotella intermedia, Porphyromonas gingivalis, or Treponema denticola on day 4, and were then phenotyped. IL-10, IL-12 and IFN-gamma concentration in the supernatant of cultures were measured. RESULTS: Expression of HLA-DR was lower in bacterial-unstimulated mature m-MDDC from CP compared to HP (p=0.04), while expression of CD1a and CD123 were higher in CP. The expression pattern of HLA-DR, CD11c, CD123, and CD1a did not change on bacterial stimulation, regardless of the bacteria. Stimulation with P. intermedia upregulated CD80 and CD86 in CP cells (p≤0.05). Production of IL-12p70 by bacterial-unstimulated m-MDDCs was 5.8-fold greater in CP compared to HP. Bacterial stimulation further increased IL-12p70 production while decreasing IL-10. Significantly more IFN-gamma was produced in co-cultures of CP m-MDDCs than with HP m-MDDCs when cells were stimulated with P. intermedia (p=0.009). CONCLUSIONS: Bacterial-unstimulated m-MDDC from CP exhibited a more immature phenotype but a cytokine profile biased towards proinflammatory response; this pattern was maintained/exacerbated after bacterial stimulation. P. intermedia upregulated co-stimulatory molecules and IFN-gamma expression in CP m-MDDC. These events might contribute to periodontitis pathogenesis
Resumo:
Insects are useful models for the study of innate immune reactions and development. The distinction between recognition mechanisms preceding the breakdown of apoptotic cells during metamorphosis, and the breakdown of cells in response to infections, is unclear. Hemolin, a Lepidopteran member of the immunoglobulin superfamily, is a candidate molecule in self/nonself recognition. This thesis investigates hemolin function and hemolin gene regulation at a molecular level. We investigated the binding and cell adhesion properties of hemolin from H. cecropia and demonstrated that the proteins could homodimerize in presence of calcium. Moreover, a higher molecular weight membrane form of hemolin was present on hemocytes. These results, taken together with an earlier finding that soluble hemolin inhibits hemocyte adhesion, indicated that the secreted hemolin could modulate hemocyte aggregation in a competitive manner in the blood. In addition, hemolin was expressed in different tissues and at different developmental stages. Since hemolin is expressed both during development and during the immune response, its different regulatory factors must act in concert. We found that the third intron contains an enhancer, through which Dif, C/EBP and HMGI synergistically activate a reporter construct in vitro. We concluded that the enhancer is used during infection, since the κB-site is crucial for an immune response. Interestingly, we also found that the active form of the steroid hormone, ecdysone, induces the hemolin gene transcription in vivo, and in addition, acts synergistically during bacterial infection. Preliminary in vivo results indicate a secondary effect of ecdysone and the importance of hormone receptor elements in the upstream promoter region of hemolin. To explore the use of Drosophila as a genetic tool for understanding hemolin function and regulation, we sought to isolate the functional homologue in this species. A fly cDNA library in yeast was screened using H. cecropia hemolin as bait. The screen was not successful. However, it did lead to the discovery of a Drosophila protein with true binding specificity for hemolin. Subsequent characterization revealed a new, highly conserved gene, which we named yippee. Yippee is distantly related to zinc finger proteins and represents a novel family of proteins present in numerous eukaryotes, including fungi, plants and humans. Notably, when the Drosophila genome sequence was revealed, no hemolin orthologue could be detected. Finally, an extensive Drosophila genome chip analysis was initiated. The goal was to investigate the Drosophila immune response, and, in contrast to earlier studies of artificially injected flies, to examine a set of natural microbes, orally and externally applied. In parallel experiments viruses, bacteria, fungi and parasites were compared to unchallenged controls. We obtained a unique set of genes that were up-regulated in the response to the parasite Octosporea muscadomesticae and to the fungus Beauveria bassiana. We expect both down-regulated and up-regulated genes to serve as a source for the discovery of new effector molecules, in particular those that are active against parasites and fungi.
Resumo:
Ion channels are protein molecules, embedded in the lipid bilayer of the cell membranes. They act as powerful sensing elements switching chemicalphysical stimuli into ion-fluxes. At a glance, ion channels are water-filled pores, which can open and close in response to different stimuli (gating), and one once open select the permeating ion species (selectivity). They play a crucial role in several physiological functions, like nerve transmission, muscular contraction, and secretion. Besides, ion channels can be used in technological applications for different purpose (sensing of organic molecules, DNA sequencing). As a result, there is remarkable interest in understanding the molecular determinants of the channel functioning. Nowadays, both the functional and the structural characteristics of ion channels can be experimentally solved. The purpose of this thesis was to investigate the structure-function relation in ion channels, by computational techniques. Most of the analyses focused on the mechanisms of ion conduction, and the numerical methodologies to compute the channel conductance. The standard techniques for atomistic simulation of complex molecular systems (Molecular Dynamics) cannot be routinely used to calculate ion fluxes in membrane channels, because of the high computational resources needed. The main step forward of the PhD research activity was the development of a computational algorithm for the calculation of ion fluxes in protein channels. The algorithm - based on the electrodiffusion theory - is computational inexpensive, and was used for an extensive analysis on the molecular determinants of the channel conductance. The first record of ion-fluxes through a single protein channel dates back to 1976, and since then measuring the single channel conductance has become a standard experimental procedure. Chapter 1 introduces ion channels, and the experimental techniques used to measure the channel currents. The abundance of functional data (channel currents) does not match with an equal abundance of structural data. The bacterial potassium channel KcsA was the first selective ion channels to be experimentally solved (1998), and after KcsA the structures of four different potassium channels were revealed. These experimental data inspired a new era in ion channel modeling. Once the atomic structures of channels are known, it is possible to define mathematical models based on physical descriptions of the molecular systems. These physically based models can provide an atomic description of ion channel functioning, and predict the effect of structural changes. Chapter 2 introduces the computation methods used throughout the thesis to model ion channels functioning at the atomic level. In Chapter 3 and Chapter 4 the ion conduction through potassium channels is analyzed, by an approach based on the Poisson-Nernst-Planck electrodiffusion theory. In the electrodiffusion theory ion conduction is modeled by the drift-diffusion equations, thus describing the ion distributions by continuum functions. The numerical solver of the Poisson- Nernst-Planck equations was tested in the KcsA potassium channel (Chapter 3), and then used to analyze how the atomic structure of the intracellular vestibule of potassium channels affects the conductance (Chapter 4). As a major result, a correlation between the channel conductance and the potassium concentration in the intracellular vestibule emerged. The atomic structure of the channel modulates the potassium concentration in the vestibule, thus its conductance. This mechanism explains the phenotype of the BK potassium channels, a sub-family of potassium channels with high single channel conductance. The functional role of the intracellular vestibule is also the subject of Chapter 5, where the affinity of the potassium channels hEag1 (involved in tumour-cell proliferation) and hErg (important in the cardiac cycle) for several pharmaceutical drugs was compared. Both experimental measurements and molecular modeling were used in order to identify differences in the blocking mechanism of the two channels, which could be exploited in the synthesis of selective blockers. The experimental data pointed out the different role of residue mutations in the blockage of hEag1 and hErg, and the molecular modeling provided a possible explanation based on different binding sites in the intracellular vestibule. Modeling ion channels at the molecular levels relates the functioning of a channel to its atomic structure (Chapters 3-5), and can also be useful to predict the structure of ion channels (Chapter 6-7). In Chapter 6 the structure of the KcsA potassium channel depleted from potassium ions is analyzed by molecular dynamics simulations. Recently, a surprisingly high osmotic permeability of the KcsA channel was experimentally measured. All the available crystallographic structure of KcsA refers to a channel occupied by potassium ions. To conduct water molecules potassium ions must be expelled from KcsA. The structure of the potassium-depleted KcsA channel and the mechanism of water permeation are still unknown, and have been investigated by numerical simulations. Molecular dynamics of KcsA identified a possible atomic structure of the potassium-depleted KcsA channel, and a mechanism for water permeation. The depletion from potassium ions is an extreme situation for potassium channels, unlikely in physiological conditions. However, the simulation of such an extreme condition could help to identify the structural conformations, so the functional states, accessible to potassium ion channels. The last chapter of the thesis deals with the atomic structure of the !- Hemolysin channel. !-Hemolysin is the major determinant of the Staphylococcus Aureus toxicity, and is also the prototype channel for a possible usage in technological applications. The atomic structure of !- Hemolysin was revealed by X-Ray crystallography, but several experimental evidences suggest the presence of an alternative atomic structure. This alternative structure was predicted, combining experimental measurements of single channel currents and numerical simulations. This thesis is organized in two parts, in the first part an overview on ion channels and on the numerical methods adopted throughout the thesis is provided, while the second part describes the research projects tackled in the course of the PhD programme. The aim of the research activity was to relate the functional characteristics of ion channels to their atomic structure. In presenting the different research projects, the role of numerical simulations to analyze the structure-function relation in ion channels is highlighted.
Resumo:
Introduction The “eversion” technique for carotid endarterectomy (e-CEA), that involves the transection of the internal carotid artery at the carotid bulb and its eversion over the atherosclerotic plaque, has been associated with an increased risk of postoperative hypertension possibly due to a direct iatrogenic damage to the carotid sinus fibers. The aim of this study is to assess the long-term effect of the e-CEA on arterial baroreflex and peripheral chemoreflex function in humans. Methods A retrospective review was conducted on a prospectively compiled computerized database of 3128 CEAs performed on 2617 patients at our Center between January 2001 and March 2006. During this period, a total of 292 patients who had bilateral carotid stenosis ≥70% at the time of the first admission underwent staged bilateral CEAs. Of these, 93 patients had staged bilateral e-CEAs, 126 staged bilateral s- CEAs and 73 had different procedures on each carotid. CEAs were performed with either the eversion or the standard technique with routine Dacron patching in all cases. The study inclusion criteria were bilateral CEA with the same technique on both sides and an uneventful postoperative course after both procedures. We decided to enroll patients submitted to bilateral e-CEA to eliminate the background noise from contralateral carotid sinus fibers. Exclusion criteria were: age >70 years, diabetes mellitus, chronic pulmonary disease, symptomatic ischemic cardiac disease or medical therapy with b-blockers, cardiac arrhythmia, permanent neurologic deficits or an abnormal preoperative cerebral CT scan, carotid restenosis and previous neck or chest surgery or irradiation. Young and aged-matched healthy subjects were also recruited as controls. Patients were assessed by the 4 standard cardiovascular reflex tests, including Lying-to-standing, Orthostatic hypotension, Deep breathing, and Valsalva Maneuver. Indirect autonomic parameters were assessed with a non-invasive approach based on spectral analysis of EKG RR interval, systolic arterial pressure, and respiration variability, performed with an ad hoc software. From the analysis of these parameters the software provides the estimates of spontaneous baroreflex sensitivity (BRS). The ventilatory response to hypoxia was assessed in patients and controls by means of classic rebreathing tests. Results A total of 29 patients (16 males, age 62.4±8.0 years) were enrolled. Overall, 13 patients had undergone bilateral e-CEA (44.8%) and 16 bilateral s-CEA (55.2%) with a mean interval between the procedures of 62±56 days. No patient showed signs or symptoms of autonomic dysfunction, including labile hypertension, tachycardia, palpitations, headache, inappropriate diaphoresis, pallor or flushing. The results of standard cardiovascular autonomic tests showed no evidence of autonomic dysfunction in any of the enrolled patients. At spectral analysis, a residual baroreflex performance was shown in both patient groups, though reduced, as expected, compared to young controls. Notably, baroreflex function was better maintained in e-CEA, compared to standard CEA. (BRS at rest: young controls 19.93 ± 2.45 msec/mmHg; age-matched controls 7.75 ± 1.24; e-CEA 13.85 ± 5.14; s-CEA 4.93 ± 1.15; ANOVA P=0.001; BRS at stand: young controls 7.83 ± 0.66; age-matched controls 3.71 ± 0.35; e-CEA 7.04 ± 1.99; s-CEA 3.57 ± 1.20; ANOVA P=0.001). In all subjects ventilation (VÝ E) and oximetry data fitted a linear regression model with r values > 0.8. Oneway analysis of variance showed a significantly higher slope both for ΔVE/ΔSaO2 in controls compared with both patient groups which were not different from each other (-1.37 ± 0.33 compared with -0.33±0.08 and -0.29 ±0.13 l/min/%SaO2, p<0.05, Fig.). Similar results were observed for and ΔVE/ΔPetO2 (-0.20 ± 0.1 versus -0.01 ± 0.0 and -0.07 ± 0.02 l/min/mmHg, p<0.05). A regression model using treatment, age, baseline FiCO2 and minimum SaO2 achieved showed only treatment as a significant factor in explaining the variance in minute ventilation (R2= 25%). Conclusions Overall, we demonstrated that bilateral e-CEA does not imply a carotid sinus denervation. As a result of some expected degree of iatrogenic damage, such performance was lower than that of controls. Interestingly though, baroreflex performance appeared better maintained in e-CEA than in s-CEA. This may be related to the changes in the elastic properties of the carotid sinus vascular wall, as the patch is more rigid than the endarterectomized carotid wall that remains in the e-CEA. These data confirmed the safety of CEA irrespective of the surgical technique and have relevant clinical implication in the assessment of the frequent hemodynamic disturbances associated with carotid angioplasty stenting.
Resumo:
The mitochondrion is an essential cytoplasmic organelle that provides most of the energy necessary for eukaryotic cell physiology. Mitochondrial structure and functions are maintained by proteins of both mitochondrial and nuclear origin. These organelles are organized in an extended network that dynamically fuses and divides. Mitochondrial morphology results from the equilibrium between fusion and fission processes, controlled by a family of “mitochondria-shaping” proteins. It is becoming clear that defects in mitochondrial dynamics can impair mitochondrial respiration, morphology and motility, leading to apoptotic cell death in vitro and more or less severe neurodegenerative disorders in vivo in humans. Mutations in OPA1, a nuclear encoded mitochondrial protein, cause autosomal Dominant Optic Atrophy (DOA), a heterogeneous blinding disease characterized by retinal ganglion cell degeneration leading to optic neuropathy (Delettre et al., 2000; Alexander et al., 2000). OPA1 is a mitochondrial dynamin-related guanosine triphosphatase (GTPase) protein involved in mitochondrial network dynamics, cytochrome c storage and apoptosis. This protein is anchored or associated on the inner mitochondrial membrane facing the intermembrane space. Eight OPA1 isoforms resulting from alternative splicing combinations of exon 4, 4b and 5b have been described (Delettre et al., 2001). These variants greatly vary among diverse organs and the presence of specific isoforms has been associated with various mitochondrial functions. The different spliced exons encode domains included in the amino-terminal region and contribute to determine OPA1 functions (Olichon et al., 2006). It has been shown that exon 4, that is conserved throughout evolution, confers functions to OPA1 involved in maintenance of the mitochondrial membrane potential and in the fusion of the network. Conversely, exon 4b and exon 5b, which are vertebrate specific, are involved in regulation of cytochrome c release from mitochondria, and activation of apoptosis, a process restricted to vertebrates (Olichon et al., 2007). While Mgm1p has been identified thanks to its role in mtDNA maintenance, it is only recently that OPA1 has been linked to mtDNA stability. Missense mutations in OPA1 cause accumulation of multiple deletions in skeletal muscle. The syndrome associated to these mutations (DOA-1 plus) is complex, consisting of a combination of dominant optic atrophy, progressive external ophtalmoplegia, peripheral neuropathy, ataxia and deafness (Amati- Bonneau et al., 2008; Hudson et al., 2008). OPA1 is the fifth gene associated with mtDNA “breakage syndrome” together with ANT1, PolG1-2 and TYMP (Spinazzola et al., 2009). In this thesis we show for the first time that specific OPA1 isoforms associated to exon 4b are important for mtDNA stability, by anchoring the nucleoids to the inner mitochondrial membrane. Our results clearly demonstrate that OPA1 isoforms including exon 4b are intimately associated to the maintenance of the mitochondrial genome, as their silencing leads to mtDNA depletion. The mechanism leading to mtDNA loss is associated with replication inhibition in cells where exon 4b containing isoforms were down-regulated. Furthermore silencing of exon 4b associated isoforms is responsible for alteration in mtDNA-nucleoids distribution in the mitochondrial network. In this study it was evidenced that OPA1 exon 4b isoform is cleaved to provide a 10kd peptide embedded in the inner membrane by a second transmembrane domain, that seems to be crucial for mitochondrial genome maintenance and does correspond to the second transmembrane domain of the yeasts orthologue encoded by MGM1 or Msp1, which is also mandatory for this process (Diot et al., 2009; Herlan et al., 2003). Furthermore in this thesis we show that the NT-OPA1-exon 4b peptide co-immuno-precipitates with mtDNA and specifically interacts with two major components of the mitochondrial nucleoids: the polymerase gamma and Tfam. Thus, from these experiments the conclusion is that NT-OPA1- exon 4b peptide contributes to the nucleoid anchoring in the inner mitochondrial membrane, a process that is required for the initiation of mtDNA replication and for the distribution of nucleoids along the network. These data provide new crucial insights in understanding the mechanism involved in maintenance of mtDNA integrity, because they clearly demonstrate that, besides genes implicated in mtDNA replications (i.e. polymerase gamma, Tfam, twinkle and genes involved in the nucleotide pool metabolism), OPA1 and mitochondrial membrane dynamics play also an important role. Noticeably, the effect on mtDNA is different depending on the specific OPA1 isoforms down-regulated, suggesting the involvement of two different combined mechanisms. Over two hundred OPA1 mutations, spread throughout the coding region of the gene, have been described to date, including substitutions, deletions or insertions. Some mutations are predicted to generate a truncated protein inducing haploinsufficiency, whereas the missense nucleotide substitutions result in aminoacidic changes which affect conserved positions of the OPA1 protein. So far, the functional consequences of OPA1 mutations in cells from DOA patients are poorly understood. Phosphorus MR spectroscopy in patients with the c.2708delTTAG deletion revealed a defect in oxidative phosphorylation in muscles (Lodi et al., 2004). An energetic impairment has been also show in fibroblasts with the severe OPA1 R445H mutation (Amati-Bonneau et al., 2005). It has been previously reported by our group that OPA1 mutations leading to haploinsufficiency are associated in fibroblasts to an oxidative phosphorylation dysfunction, mainly involving the respiratory complex I (Zanna et al., 2008). In this study we have evaluated the energetic efficiency of a panel of skin fibroblasts derived from DOA patients, five fibroblast cell lines with OPA1 mutations causing haploinsufficiency (DOA-H) and two cell lines bearing mis-sense aminoacidic substitutions (DOA-AA), and compared with control fibroblasts. Although both types of DOA fibroblasts maintained a similar ATP content when incubated in a glucose-free medium, i.e. when forced to utilize the oxidative phosphorylation only to produce ATP, the mitochondrial ATP synthesis through complex I, measured in digitonin-permeabilized cells, was significantly reduced in cells with OPA1 haploinsufficiency only, whereas it was similar to controls in cells with the missense substitutions. Furthermore, evaluation of the mitochondrial membrane potential (DYm) in the two fibroblast lines DOA-AA and in two DOA-H fibroblasts, namely those bearing the c.2819-2A>C mutation and the c.2708delTTAG microdeletion, revealed an anomalous depolarizing response to oligomycin in DOA-H cell lines only. This finding clearly supports the hypothesis that these mutations cause a significant alteration in the respiratory chain function, which can be unmasked only when the operation of the ATP synthase is prevented. Noticeably, oligomycin-induced depolarization in these cells was almost completely prevented by preincubation with cyclosporin A, a well known inhibitor of the permeability transition pore (PTP). This results is very important because it suggests for the first time that the voltage threshold for PTP opening is altered in DOA-H fibroblasts. Although this issue has not yet been addressed in the present study, several are the mechanisms that have been proposed to lead to PTP deregulation, including in particular increased reactive oxygen species production and alteration of Ca2+ homeostasis, whose role in DOA fibroblasts PTP opening is currently under investigation. Identification of the mechanisms leading to altered threshold for PTP regulation will help our understanding of the pathophysiology of DOA, but also provide a strategy for therapeutic intervention.
Resumo:
Die Dreispektrometeranlage der A1-Kollaboration am MainzerElektronenbeschleuniger MAMI wurde im Rahmen dieser Arbeitverwendet, um die Elektrodisintegration des Deuteronsmit Hilfe der Reaktion d(e,e'p)n zu untersuchen. Im ersten Teil der Untersuchungen wurde die longitudinaleund transversale Strukturfunktion aus denWirkungsquerschnitten extrahiert. Die Zentralwerte derkinematischen Parameter waren dabei wie folgt eingestellt:1) Der Impulsübertrag wurde für alle Messungen auf 450 MeV/c festgelegt.2) Das Proton wurde in Richtung des Impulsübertrags nachgewiesen (parallele Kinematik).3) Vier Einstellungen des Energieübertrags, und damit korrespondierend des fehlenden Impulses, wurden gemessen: Energieübertrag / MeV : 128, 226, 289, 360. Fehlender Impuls / (MeV/c): 50, 200, 275, 350.4) Für jede dieser vier Kinematiken wurden mindestens drei verschiedene Einschußenergien bzw. Elektronenstreuwinkel eingestellt, um die Strukturfunktionen mit Hilfe der Rosenbluth-Separation zu bestimmen. Im zweiten Teil der Untersuchungen wurde derWirkungsquerschnitt für hohe fehlende Impulse bestimmt.Dessen Zentralwerte wurden von 30 MeV/c bis 906 MeV/cvariiert, wobei für die hohen fehlenden Impulse das Protonweit außerhalb der Richtung des Impulsübertragesnachzuweisen war. Der Energieübertrag lag dabei zwischen180 MeV und 600 MeV und der Impulsübertrag zwischen608 MeV/c und 698 MeV/c.
Resumo:
Aim: To evaluate the early response to treatment to an antiangiogenetic drug (sorafenib) in a heterotopic murine model of hepatocellular carcinoma (HCC) using ultrasonographic molecular imaging. Material and Methods: the xenographt model was established injecting a suspension of HuH7 cells subcutaneously in 19 nude mice. When tumors reached a mean diameter of 5-10 mm, they were divided in two groups (treatment and vehicle). The treatment group received sorafenib (62 mg/kg) by daily oral gavage for 14 days. Molecular imaging was performed using contrast enhanced ultrasound (CEUS), by injecting into the mouse venous circulation a suspension of VEGFR-2 targeted microbubbles (BR55, kind gift of Bracco Swiss, Geneve, Switzerland). Video clips were acquired for 6 minutes, then microbubbles (MBs) were destroyed by a high mechanical index (MI) impulse, and another minute was recorded to evaluate residual circulating MBs. The US protocol was repeated at day 0,+2,+4,+7, and +14 from the beginning of treatment administration. Video clips were analyzed using a dedicated software (Sonotumor, Bracco Swiss) to quantify the signal of the contrast agent. Time/intensity curves were obtained and the difference of the mean MBs signal before and after high MI impulse (Differential Targeted Enhancement-dTE) was calculated. dTE represents a numeric value in arbitrary units proportional to the amount of bound MBs. At day +14 mice were euthanized and the tumors analyzed for VEGFR-2, pERK, and CD31 tissue levels using western blot analysis. Results: dTE values decreased from day 0 to day +14 both in treatment and vehicle groups, and they were statistically higher in vehicle group than in treatment group at day +2, at day +7, and at day +14. With respect to the degree of tumor volume increase, measured as growth percentage delta (GPD), treatment group was divided in two sub-groups, non-responders (GPD>350%), and responders (GPD<200%). In the same way vehicle group was divided in slow growth group (GPD<400%), and fast growth group (GPD>900%). dTE values at day 0 (immediately before treatment start) were higher in non-responders than in responders group, with statistical difference at day 2. While dTE values were higher in the fast growth group than in the slow growth group only at day 0. A significant positive correlation was found between VEGFR-2 tissue levels and dTE values, confirming that level of BR55 tissue enhancement reflects the amount of tissue VEGF receptor. Conclusions: the present findings show that, at least in murine experimental models, CEUS with BR55 is feasable and appears to be a useful tool in the prediction of tumor growth and response to sorafenib treatment in xenograft HCC.
Resumo:
Introduction – Although imatinib (IM) is a recognized gold standard in chronic myeloid leukemia (CML) therapy, resistance has emerged in a significant proportion of patients. Aim – The aim of this study was: (1) to investigate the role of genetic variants in genes encoding for IM transporters, as candidate of IM responsiveness and (2) to test the influence of miRNAs on IM response, focusing on efflux transporters. Methods – As a first step, a panel of polymorphisms (SNPs) was genotyped in a subgroup population of 189 patients enrolled in the Tyrosine Kinase Inhibitor Optimization and Selectivity (TOPS) trial. The association with cytogenetic response and molecular response (MR) was assessed for each SNP. As a second step, an in vitro IM-resistant model (K-562 CML cell line) was established. miRNAs profiles were analyzed using Taqman arrays and in silico search was performed for miRNAs deregulated after IM treatment. mRNA and protein expression were quantified using TaqMan realtime PCR and Western blotting, respectively. Results – (1) Among Caucasian patients, ABCB1 rs60023214 significantly correlated with complete MR (P = 0.005). Concerning SNPs combination in IM uptake transporters, the associations with treatment outcomes were statistically significant for both major and complete MR (P = 0.005 and P = 0.01, respectively). (2) ABCB1 protein was not expressed under any conditions of treatment, differently from ABCG2. Two deregulated miRNAs, namely miR-212 and miR-328, were identified to be inversely correlated with ABCG2 (r2= 0.57; p=0.03 and r2=0.47; p=0.06, respectively). Experiments of loss and gain of function confirmed the functional influence of these miRNAs on ABCG2. Conclusion – The multiple candidate gene approach identified single and combination of SNPs that can be proposed as predictor of IM response. The in vitro study suggested that IM resistance could be mediated by miRNA-dependent mechanism. Further studies are needed to validate these preliminary findings.
Resumo:
The exact mechanisms of the exercise induced adaptations is not lucid, but recent studies have delineated two means of signaling by which the adaptations occur (1) substrate availability signaling (metabolic stress) (2) hormone-receptor signaling. We have decided to specifically investigate two metabolic signaling enzymes [AMP-activated kinase (AMPK) and Sirtuin 1(SIRT1)] and two hormones [Adiponectin and Adrenergic stimulation].Tis based on four papers with the following conclusions: (1)Increase in SIRT1 activity and expression in H9c2 cells treated with phenylephrine is an adaptive response to the hypertrophic stress, mediated by AMPK. (2)The lack of optimal nutritional conditions (energetic substrates) due to a prolonged activation of AMPK can contrast the establishment of hypertrophy, possibly also by means of the negative modulation of ODC activity. (3) Our findings offer a possibile hypothesis as to the fact the the G allele on site 45 could lead to the increasd risk of Type II diabetes through a decrease in lean body mass. (4) Our results suggest that there is an ADIPOQ gene effect in relation to bone parameters. Statistical analysis show that the presence of the T allele in position 45 favors an increase in lumbar spine bone mineral content (BMC) when compared to subjects with a G allele substitution, which can be do the the increase in lean body mass in this genotype group.
Resumo:
CpGV-MCp5 is a natural mutant of the Cydia pomonella Granulovirus (Mexican isolate) (CpGV-M) that harbors an insect host transposon termed TCl4.7 in its genome. TCl4.7 is located between the open reading frames Cp15 and Cp16 and separates two homologous regions hr3 and hr4, which have been recently shown to be origins of replication of CpGV-M. The MCp5 has a significant replication disadvantage in the presence of the wild-type CpGV-M. In this study, the possible effects of TCl4.7 transposon insertion on the genome function of its insertion site has been analysed. The role of Cp15 and Cp16 in the context of the virus infection cycle was examined by generating a CpGV-Bacmid (CpBAC) and Cp15 knock-out (CpBACCp15KO) and Cp16 knock-out (CpBACCp16KO) mutants. The mutant CpBACCp15KO was not able to replicate in CM larvae suggesting that Cp15 was essential for virus replication. In contrast, the mutant CpBACCp16KO infected CM larvae and produced viable occlusion bodies (OBs) demonstrating that Cp16 is a non-essential gene for virus in vivo infection of C. pomonella. The temporal transcription of Cp15 and Cp16, as well as of Cp31 (F protein) as a control, was analysed using RT-PCR and quantitative real-time PCR. It suggested a general delay or reduction of gene transcription of MCp5 compared to the parental CpGV-M. Western blot analyses using anti-Cp15 and anti-Cp16 polyclonal antibodies, however, did not show any immuno-reactive response. Thus, a direct influence of TCl4.7 on the expression of Cp15 and Cp16 could not be substantiated. To investigate whether the interruption of hr3 and hr4 palindromes affects the virus replication, two mutant bacmids with a deletion of hr3 and hr4 (CpBAChr3/hr4-KO) and another with an insertion of a Kanamycin resistance cassette between hr3 and hr4 (CpBAChr3-kan-hr4) were generated. Both mutant bacmids replicated and produced infectious virus OBs, which did not significantly differ in their median lethal concentration (LC50) and median survival time (ST50) compared to the parental CpBAC. Interestingly, the mutant CpBAChr3-kan-hr4 was very effectively out-competed by parental CpBAC, when CM larvae were co-infected with known ratios of OBs of CpBAC and the mutant CpBAChr3-kan-hr4. These observations suggested a functional co-operation between hr3 and hr4 which was interrupted by the KanR insertion in CpBAChr3-kan-hr4 and possibly by TCl4.7 transposon insertion in the mutant MCp5. This hypothesis may explain the observed replication disadvantage of the mutants MCp5 and CpBAChr3-kan-hr4 in the presence of the parental viruses CpGV-M and CpBAC, respectively.
Resumo:
IL-33/ST2 axis is known to promote Th2 immune responses and has been linked to several autoimmune and inflammatory disorders, including inflammatory bowel disease (IBD), and recent evidences show that it can regulate eosinophils (EOS) infiltration and function. Based also on the well documented relationship between EOS and IBD, we assessed the role of IL-33-mediated eosinophilia and ileal inflammation in SAMP1/YitFc (SAMP) murine model of Th1/Th2 chronic enteritis, and we found that IL-33 is related to inflammation progression and EOS infiltration as well as IL-5 and eotaxins increase. Administering IL-33 to SAMP and AKR mice augmented eosinophilia, eotaxins mRNA expression and Th2 molecules production, whereas blockade of ST2 and/or typical EOS molecules, such as IL-5 and CCR3, resulted in a marked decrease of inflammation, EOS infiltration, IL-5 and eotaxins mRNA expression and Th2 cytokines production. Human data supported mice’s showing an increased colocalization of IL-33 and EOS in the colon mucosa of UC patients, as well as an augmented IL-5 and eotaxins mRNA expression, when compared to non-UC. Lastly we analyzed SAMP raised in germ free (GF) condition to see the microbiota effect on IL-33 expression and Th2 responses leading to chronic intestinal inflammation. We found a remarkable decrease in ileal IL-33 and Th2 cytokines mRNA expression as well as EOS infiltration in GF versus normal SAMP with comparable inflammatory scores. Moreover, EOS depletion in normal SAMP didn’t affect IL-33 mRNA expression. These data demonstrate a pathogenic role of IL-33-mediated eosinophilia in chronic intestinal inflammation, and that blockade of IL-33 and/or downstream EOS activation may represent a novel therapeutic modality to treat patients with IBD. Also they highlight the gut microbiota role in IL-33 production, and the following EOS infiltration in the intestinal mucosa, confirming that the microbiota is essential in mounting potent Th2 response leading to chronic ileitis in SAMP.