990 resultados para Importance sampling
Resumo:
The impact of ocean acidification and carbonation on microbial community structure was assessed during a large-scale in situ costal pelagic mesocosm study, included as part of the EPOCA 2010 Arctic campaign. The mesocosm experiment included ambient conditions (fjord) and nine mesocosms with pCO(2) levels ranging from similar to 145 to similar to 1420 mu atm. Samples for the present study were collected at ten time points (t-1, t1, t5, t7, t12, t14, t18, t22, t26 to t28) in seven treatments (ambient fjord (similar to 145), 2x similar to 185, similar to 270, similar to 685, similar to 820, similar to 1050 mu atm) and were analysed for "small" and "large" size fraction microbial community composition using 16S rRNA (ribosomal ribonucleic acid) amplicon sequencing. This high-throughput sequencing analysis produced similar to 20 000 000 16S rRNA V4 reads, which comprised 7000OTUs. The main variables structuring these communities were sample origins (fjord or mesocosms) and the community size fraction (small or large size fraction). The community was significantly different between the unenclosed fjord water and enclosed mesocosms (both control and elevated CO2 treatments) after nutrients were added to the mesocosms, suggesting that the addition of nutrients is the primary driver of the change in mesocosm community structure. The relative importance of each structuring variable depended greatly on the time at which the community was sampled in relation to the phytoplankton bloom. The sampling strategy of separating the small and large size fraction was the second most important factor for community structure. When the small and large size fraction bacteria were analysed separately at different time points, the only taxon pCO(2) was found to significantly affect were the Gammaproteobacteria after nutrient addition. Finally, pCO(2) treatment was found to be significantly correlated (non-linear) with 15 rare taxa, most of which increased in abundance with higher CO2.
Resumo:
An inverse food-web model for the western Antarctic Peninsula (WAP) pelagic food web was constrained with data from Palmer Long Term Ecological Research (PAL-LTER) project annual austral summer sampling cruises. Model solutions were generated for 2 regions with Adelie penguin Pygoscelis adeliae colonies presenting different population trends (a northern and a southern colony) for a 12 yr period (1995-2006). Counter to the standard paradigm, comparisons of carbon flow through bacteria, microzooplankton, and krill showed that the diatom-krill-top predator food chain is not the dominant pathway for organic carbon exchanges. The food web is more complex, including significant contributions by microzooplankton and the microbial loop. Using both inverse model results and network indices, it appears that in the northern WAP the food web is dominated by the microbial food web, with a temporal trend toward its increasing importance. The dominant pathway for the southern WAP food web varies from year to year, with no detectable temporal trend toward dominance of microzooplankton versus krill. In addition, sensitivity analyses indicated that the northern colony of Adelie penguins, whose population size has been declining over the past 35 yr, appears to have sufficient krill during summer to sustain its basic metabolic needs and rear chicks, suggesting the importance of other processes in regulating the Adelie population decline.