929 resultados para IR and Raman spectroscopy
Resumo:
MgTiO3 (MTO) thin films were prepared by the polymeric precursor method with posterior spin-coating deposition. The films were deposited on Pt(111)/Ti/SiO2/Si(100) substrates and heat treated at 350 °C for 2 h and then heat treated at 400, 450, 500, 550, 600, 650 and 700 °C for 2 h. The degree of structural order−disorder, optical properties, and morphology of the MTO thin films were investigated by X-ray diffraction (XRD), micro-Raman spectroscopy (MR), ultraviolet− visible (UV−vis) absorption spectroscopy, photoluminescence (PL) measurements, and field-emission gun scanning electron microscopy (FEG-SEM) to investigate the morphology. XRD revealed that an increase in the annealing temperature resulted in a structural organization of MTO thin films. First-principles quantum mechanical calculations based on density functional theory (B3LYP level) were employed to study the electronic structure of ordered and disordered asymmetric models. The electronic properties were analyzed, and the relevance of the present theoretical and experimental results was discussed in the light of PL behavior. The presence of localized electronic levels and a charge gradient in the band gap due to a break in the symmetry are responsible for the PL in disordered MTO lattice.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper reports on the development and validation of a simple and sensitive method that uses solid phase extraction (SPE) and liquid chromatography with ultraviolet detection to analyze fluoxetine (FLX) and norfluoxetine (NFLX) in human plasma samples. A lab-made C18 SPE phase was synthesized by using a sol–gel process employing a low-cost silica precursor. This sorbent was fully characterized by nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM) to check the particles' shape, size and C18 functionalization. The lab-made C18 silica was used in the sample preparation step of human plasma by the SPE-HPLC-UV method. The method was validated in the 15 to 500 ng mL 1 range for both FLX and NFLX using a matrix matched curve. Detection limits of 4.3 and 4.2 ng mL 1 were obtained for FLX and NFLX, respectively. The repeatability and intermediary precision achieved varied from 7.6 to 15.0% and the accuracy ranged from 14.9 to 9.1%. The synthesized C18 sorbent was compared to commercial C18 sorbents. The average recoveries were similar (85–105%), however the lab-made C18 silica showed fewer interfering peaks in the chromatogram. After development and validation, the method using the lab-made C18 SPE was applied to plasma samples of patients under FLX treatment (n ¼ 6). The concentrations of FLX and NFLX found in the samples varied from 46.8–215.5 and 48.0–189.9 ng mL 1 , respectively.
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A series of four different powders ceria doped Ce1-xErxO2-delta (0.05 <= x <= 0.20) were synthesized by applying self-propagating reaction at room temperature (SPRT method). SPRT procedure is based on the self-propagating room temperature reaction between metal nitrates and sodium hydroxide, wherein the reaction is spontaneous and terminates extremely fast. The method is known to assure very precise stoichiometry of the final product in comparison with a tailored composition. XRPD, Raman spectroscopy, TEM and BET measurements were used to characterize the nanopowders at room temperature. It was shown that all obtained powders were single phase solid solutions with a fluorite-type crystal structure and all powder particles have nanometric size (about 3-4 nm). Densification was performed at 1550 degrees C, in an air atmosphere for 2 h. XRPD, SEM and complex impedance method measurements were carried out on sintered samples. Single phase form was evidenced for each sintered materials. The best value of conductivity at 700 degrees C amounted to 1.10 x 10(-2) Omega(-1) cm(-1) for Ce0.85Er0.O-3(2-delta) sample. Corresponding activation energies of conductivity amounted to 0.28 eV in the temperature range 500-700 degrees C. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Nano- (30-60 nm) and submicron (100-350 nm) ZnO particles were synthesized using solvothermal method at 200 degrees C from an ethanolic solution of zinc acetate dihydrate, applying different reaction conditions, i.e., pH value of precursor and time of the reaction. The X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), UV-vis diffuse reflectance (DR), Raman spectroscopy, and photoluminescence (PL) spectroscopy have been employed for characterization of synthesized ZnO powders. It was shown that the structural, morphological, and optical properties are largely determined by reaction conditions during solvothermal synthesis. The particle crystallinity improves with the decrease of pH value and/or the increase of time of the reaction. The Raman and PL spectra analyses indicate that the oxygen interstitials are dominant intrinsic defects in solvothermally synthesized ZnO powders. It was observed that concentration of defects in wurtzite ZnO crystal lattices slightly changes with the variation of pH value of the precursor and time of the solvothermal reaction. The correlation between structural ordering and defect structure of particles and corresponding growth processes was discussed.
Resumo:
The cct isomers [RuCl 2(CO) 2(PPh 3) 2] (1) and [RuCl 2(CO) 2(AsPh 3) 2] (2) were synthesized from [RuCl 3(PPh 3) 2DMA]DMA and [RuCl 3(AsPh 3) 2DMA]DMA, respectively. The complexes were characterized by elemental analysis, IR and UV-vis spectroscopy and their molecular structures were found to be cis-cis-trans isomers by X-ray crystallography. Cyclic voltammetry data show that the tripenylphosphine stabilizes better the ruthernium(II) complex than the tripenylarsine ligand. © 1994.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Darunavir, a protease inhibitor used in the treatment of HIV infection, presents few methods for its determination in pharmaceuticals. Infrared (IR) spectroscopy offers the possibility of obtaining spectra relatively quickly, providing interesting information, analytically, qualitatively or quantitatively. Capillary electrophoresis (CE) performs separations of high efficiency in shorter time with reagents and samples in small quantity. These two methods are cost-benefitted when we evaluate the green level and the cost of analysis. Faster and cheaper methods without generating organic waste by IR and CE for the quantification of darunavir were developed and validated, focusing socioeconomic impact of analytical decisions. If the cost of acquisition, maintenance, production, analysis and conditioning of drugs and pharmaceuticals is high, consequently the price of this product in the market will be higher and it cannot be accessible to the patient. Treatment failure not only affects the quality of life of patients, but also contributes significantly to the economic burden of the health system. In this context there is a tool called Analysis of the Life Cycle, which comes to make us think in a multidimensional way focusing the whole, the parts and especially the interaction among the parts of a system.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)