946 resultados para INTERFERON-
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The effect of indomethacin (Indo), a cyclo-oxygenase inhibitor, on the monocyte-mediated killing of a low- (Pb265) and a high- (Pb18) virulence strain of Paracoccidioides brasiliensis was examined. The Pb18 strain was not killed by either non-activated or interferon-gamma (IFN-gamma) -activated human monocytes but these cells did show fungicidal activity if pretreated with Indo. In contrast with IFN-gamma, tumour necrosis factor-alpha (TNF-alpha) was very effective at stimulating the fungicidal activity of monocytes. While the low-virulence strain, Pb265, could not be killed by monocytes, cells preincubated with IFN-gamma demonstrated fungicidal activity. The killing of this strain was also induced by pretreatment of monocytes with Indo. The results suggest a negative role for prostaglandins, which are synthesized via the cyclo-oxygenase pathway, in the regulation of monocyte-mediated killing of virulent and avirulent strains of P. brasiliensis and that TNF-alpha generation during the fungus-monocyte interaction is more important in the killing of Pb265 than Pb18.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The Kaposi sarcoma-associated herpesvirus (KSHV), or human herpesvirus 8, is a gammaherpesvirus etiologically linked to the development of Kaposi sarcoma, primary effusion lymphomas, and multicentric Castleman disease in humans. KSHV is unique among other human herpesviruses because of the elevated number of viral products that mimic human cellular proteins, such as a viral cyclin, a viral G protein-coupled receptor, anti-apoptotic proteins (e.g. v-bcl2 and v-FLIP), viral interferon regulatory factors, and CC chemokine viral homologues. Several KSHV products have oncogenic properties, including the transmembrane K1 glycoprotein. KSHV K1 is encoded in the viral ORFK1, which is the most variable portion of the viral genome, commonly used to discriminate among viral genotypes. The extracellular region of K1 has homology with the light chain of lambda immunoglobulin, and its cytoplasmic region contains an immunoreceptor tyrosine-based activation motif (ITAM). KSHV K1 ITAM activates several intracellular signaling pathways, notably PI3K/AKT. Consequently, K1 expression inhibits proapoptotic proteins and increases the life-span of KSHV-infected cells. Another remarkable effect of K1 activity is the production of inflammatory cytokines and proangiogenic factors, such as vascular endothelial growth factor. KSHV K1 immortalizes primary human endothelial cells and transforms rodent fibroblasts in vitro; moreover, K1 induces tumors in vivo in transgenic mice expressing this viral protein. This review aims to consolidate and discuss the current knowledge on this intriguing KSHV protein, focusing on activities of K1 that can contribute to the pathogenesis of KSHV-associated human cancers. Copyright © 2015 John Wiley & Sons, Ltd.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Kassabach-Merritt syndrome is a combination of capillary hemangioma and thrombocytopenia that predisposes to bleeding with petechiae, ecchymosis and spontaneous bruising. Treatment is generally started with corticosteroids, interferon alpha or chemotherapy. We present the case of a child (aged 1 year and 9 months) with a giant hemangioma, from the root of the thigh to the knee, and thrombocytopenia. Treatment was started with corticosteroids, without improvement, and then intra-tumor and cutaneous bleeding appeared spontaneously. The patient’s clinical condition precluded prescription of vincristine and interferon and emergency tumor resection was conducted because of extreme thrombocytopenia and bleeding. The child then began to develop sepsis with hypotension and ischemia of remnant tissues. This case presented a therapeutic challenge, which is the subject of this article.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
OBJECTIVE: To analyze major histocompatibility complex expression in the muscle fibers of juvenile and adult dermatomyositis. METHOD: In total, 28 untreated adult dermatomyositis patients, 28 juvenile dermatomyositis patients (Bohan and Peter's criteria) and a control group consisting of four dystrophic and five Pompe's disease patients were analyzed. Routine histological and immunohistochemical (major histocompatibility complex I and II, StreptoABComplex/HRP, Dakopatts) analyses were performed on serial frozen muscle sections. Inflammatory cells, fiber damage, perifascicular atrophy and increased connective tissue were analyzed relative to the expression of major histocompatibility complexes I and II, which were assessed as negatively or positively stained fibers in 10 fields (200X). RESULTS: The mean ages at disease onset were 42.0 +/- 15.9 and 7.3 +/- 3.4 years in adult and juvenile dermatomyositis, respectively, and the symptom durations before muscle biopsy were similar in both groups. No significant differences were observed regarding gender, ethnicity and frequency of organ involvement, except for higher creatine kinase and lactate dehydrogenase levels in adult dermatomyositis (p<0.050). Moreover, a significantly higher frequency of major histocompatibility complex I (96.4% vs. 50.0%, p<0.001) compared with major histocompatibility complex II expression (14.3% vs. 53.6%, p = 0.004) was observed in juvenile dermatomyositis. Fiber damage (p = 0.006) and increased connective tissue (p<0.001) were significantly higher in adult dermatomyositis compared with the presence of perifascicular atrophy (p<0.001). The results of the histochemical and histological data did not correlate with the demographic data or with the clinical and laboratory features. CONCLUSION: The overexpression of major histocompatibility complex I was an important finding for the diagnosis of both groups, particularly for juvenile dermatomyositis, whereas there was lower levels of expression of major histocompatibility complex II than major histocompatibility complex I. This finding was particularly apparent in juvenile dermatomyositis.
Resumo:
Here we compare the management and survival outcomes of chronic myeloid leukemia (CML) patients who had early or late imatinib mesylate (IM) therapy. The cytogenetic and molecular responses of 189 CML patients were analyzed. Of this group, 121 patients were classified as the early chronic phase (ECP) group and started IM within 12 months of diagnosis. The other 68 patients were classified as the late chronic phase (LCP) group who had been treated with interferon (IFN)-alpha-2 and crossed over to IM more than 12 months after diagnosis. The overall rates of complete cytogenetic response (CCyR) and major molecular response (MMR) at last follow-up were 83.6 and 78.1% in the ECP and LCP groups, respectively. The CCyR rates were 89.3 (for ECP patients) versus 73.5% (for LCP patients; p < 0.0001). At last follow-up, 82.4% ECP and 64.2% LCP patients had achieved an MMR (p < 0.0001). No significant differences were noted between the two groups with regard to survival outcomes. Our experience reveals that IM is an effective rescue therapy in most CML LCP patients who are intolerant or in whom IFN-alpha therapy fails. Such therapeutic options should be considered in LCP patients, particularly in countries where IM may not be available. Copyright (C) 2012 S. Karger AG, Basel
Resumo:
Oropouche virus, of the family Bunyaviridae, genus Orthobunyavirus, serogroup Simbu, is an important causative agent of arboviral febrile illness in Brazil. An estimated 500,000 cases of Oropouche fever have occurred in Brazil in the last 30 years, with recorded cases also in Panama, Peru, Suriname and Trinidad. We have developed an experimental model of Oropouche virus infection in neonatal BALB/c mouse by subcutaneous inoculation. The vast majority of infected animals developed disease on the 5th day post infection, characterized mainly by lethargy and paralysis, progressing to death within 10 days. Viral replication was documented in brain cells by in situ hybridization, immunohistochemistry and virus titration. Multi-step immunohistochemistry indicated neurons as the main target cells of OROV infection. Histopathology revealed glial reaction and astrocyte activation in the brain and spinal cord, with neuronal apoptosis. Spleen hyperplasia and mild meningitis were also found, without viable virus detected in liver and spleen. This is the first report of an experimental mouse model of OROV infection, with severe involvement of the central nervous system, and should become useful in pathogenesis studies, as well as in preclinical testing of therapeutic interventions for this emerging pathogen. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
Background: Tuberculosis, caused by Mycobacterium tuberculosis or Mycobacterium bovis, remains one of the leading infectious diseases worldwide. The ability of mycobacteria to rapidly grow in host macrophages is a factor contributing to enhanced virulence of the bacteria and disease progression. Bactericidal functions of phagocytes are strictly dependent on activation status of these cells, regulated by the infecting agent and cytokines. Pathogenic mycobacteria can survive the hostile environment of the phagosome through interference with activation of bactericidal responses. To study the mechanisms employed by highly virulent mycobacteria to promote their intracellular survival, we investigated modulating effects of two pathogenic M. bovis isolates and a reference M. tuberculosis H37Rv strain, differing in their ability to multiply in macrophages, on activation phenotypes of the cells primed with major cytokines regulating proinflammatory macrophage activity. Results: Bone marrow- derived macrophages obtained from C57BL/6 mice were infected by mycobacteria after a period of cell incubation with or without treatment with IFN-gamma, inducing proinflammatory type-1 macrophages (M1), or IL-10, inducing anti-inflammatory type-2 cells (M2). Phenotypic profiling of M1 and M2 was then evaluated. The M. bovis strain MP287/03 was able to grow more efficiently in the untreated macrophages, compared with the strains B2 or H37Rv. This strain induced weaker secretion of proinflammatory cytokines, coinciding with higher expression of M2 cell markers, mannose receptor (MR) and arginase-1 (Arg-1). Treatment of macrophages with IFN-gamma and infection by the strains B2 and H37Rv synergistically induced M1 polarization, leading to high levels of inducible nitric oxide synthase (iNOS) expression, and reduced expression of the Arg-1. In contrast, the cells infected with the strain MP287/03 expressed high levels of Arg-1 which competed with iNOS for the common substrate arginine, leading to lower levels of NO production. Conclusions: The data obtained demonstrated that the strain, characterized by increased growth in macrophages, down- modulated classical macrophage activation, through induction of an atypical mixed M1/M2 phenotype.