776 resultados para INSULATOR
Resumo:
We review the role of strong electronic correlations in quasi-two-dimensional organic charge transfer salts such as (BEDT-TTF)(2)X, (BETS)(2)Y, and beta'-[Pd(dmit)(2)](2)Z. We begin by defining minimal models for these materials. It is necessary to identify two classes of material: the first class is strongly dimerized and is described by a half-filled Hubbard model; the second class is not strongly dimerized and is described by a quarter-filled extended Hubbard model. We argue that these models capture the essential physics of these materials. We explore the phase diagram of the half-filled quasi-two-dimensional organic charge transfer salts, focusing on the metallic and superconducting phases. We review work showing that the metallic phase, which has both Fermi liquid and 'bad metal' regimes, is described both quantitatively and qualitatively by dynamical mean field theory (DMFT). The phenomenology of the superconducting state is still a matter of contention. We critically review the experimental situation, focusing on the key experimental results that may distinguish between rival theories of superconductivity, particularly probes of the pairing symmetry and measurements of the superfluid stiffness. We then discuss some strongly correlated theories of superconductivity, in particular the resonating valence bond (RVB) theory of superconductivity. We conclude by discussing some of the major challenges currently facing the field. These include parameterizing minimal models, the evidence for a pseudogap from nuclear magnetic resonance (NMR) experiments, superconductors with low critical temperatures and extremely small superfluid stiffnesses, the possible spin- liquid states in kappa-(ET)(2)Cu-2(CN)(3) and beta'-[Pd(dmit)(2)](2)Z, and the need for high quality large single crystals.
Resumo:
Dynamical systems that involve impacts frequently arise in engineering. This Letter reports a study of such a system at microscale that consists of a nonlinear resonator operating with an unilateral impact. The microresonators were fabricated on silicon-on-insulator wafers by using a one-mask process and then characterised by using the capacitively driving and sensing method. Numerical results concerning the dynamics of this vibro-impact system were verified by the experiments. Bifurcation analysis was used to provide a qualitative scenario of the system steady-state solutions as a function of both the amplitude and the frequency of the external driving sinusoidal voltage. The results show that the amplitude of resonant peak is levelled off owing to the impact effect and that the bandwidth of impacting is dependent upon the nonlinearity and the operating conditions.
Resumo:
The tribology of linear tape storage system including Linear Tape Open (LTO) and Travan5 was investigated by combining X-ray Photoelectron Spectroscopy (XPS), Auger Electron Spectroscopy (AES), Optical Microscopy and Atomic Force Microscopy (AFM) technologies. The purpose of this study was to understand the tribology mechanism of linear tape systems then projected recording densities may be achieved in future systems. Water vapour pressure or Normalized Water Content (NWC) rather than the Relative Humidity (RH) values (as are used almost universally in this field) determined the extent of PTR and stain (if produced) in linear heads. Approximately linear dependencies were found for saturated PTR increasing with normalized water content increasing over the range studied using the same tape. Fe Stain (if produced) preferentially formed on the head surfaces at the lower water contents. The stain formation mechanism had been identified. Adhesive bond formation is a chemical process that is governed by temperature. Thus the higher the contact pressure, the higher the contact temperature in the interface of head and tape, was produced higher the probability of adhesive bond formation and the greater the amount of transferred material (stain). Water molecules at the interface saturate the surface bonds and makes adhesive junctions less likely. Tape polymeric binder formulation also has a significant role in stain formation, with the latest generation binders producing less transfer of material. This is almost certainly due to higher cohesive bonds within the body of the magnetic layer. TiC in the two-phase ceramic tape-bearing surface (AlTiC) was found to oxidise to form TiO2.The oxidation rate of TiC increased with water content increasing. The oxide was less dense than the underlying carbide; hence the interface between TiO2 oxide and TiC was stressed. Removals of the oxide phase results in the formation of three-body abrasive particles that were swept across the tape head, and gave rise to three-body abrasive wear, particularly in the pole regions. Hence, PTR and subsequent which signal loss and error growth. The lower contact pressure of the LTO system comparing with the Travan5 system ensures that fewer and smaller three-body abrasive particles were swept across the poles and insulator regions. Hence, lower contact pressure, as well as reducing stain in the same time significantly reduces PTR in the LTO system.
Resumo:
The electrical and optical characteristics of a cylindrical alumina insulator (94% Al203) have been measured under ultra-high vacuum (P < 10-8 mBar) conditions. A high-resolution CCD camera was used to make real-time optical recordings of DC prebreakdown luminescence from the ceramic, under conditions where DC current magnitudes were limited to less than 50μA. Two concentric metallized rings formed a pair of co-axial electrodes, on the end-face of the alumina tube; a third 'transparent' electrode was employed to study the effect of an orthogonal electric field upon the radial conduction processes within the metallized alumina specimen. The wavelength-spectra of the emitted light was quantified using a high-speed scanning monochromator and photo-multiplier tube detector. Concurrent electrical measurements were made alongside the recording of optical-emission images. An observed time-dependence of the photon-emission is correlated with a time-variation observed in the DC current-voltage characteristics of the alumina. Optical images were also recorded of pulsed-field surface-flashover events on the alumina ceramic. An intensified high-speed video technique provided 1ms frames of surface-flashover events, whilst 100ns frames were achieved using an ultra high-speed fast-framing camera. By coupling this fast-frame camera to a digital storage oscilloscope, it was possible to establish a temporal correlation between the application of a voltage-pulse to the ceramic and the evolution of photonic emissions from the subsequent surface-flashover event. The electro-optical DC prebreakdown characteristics of the alumina are discussed in terms of solid-state photon-emission processes, that are believed to arise from radiative electron-recombination at vacancy-defects and substitutional impurity centres within the surface-layers of the ceramic. The physical nature of vacancy-defects within an alumina dielectric is extensively explored, with a particular focus placed upon the trapped electron energy-levels that may be present at these defect centres. Finally, consideration is given to the practical application of alumina in the trigger-ceramic of a sealed triggered vacuum gap (TVG) switch. For this purpose, a physical model describing the initiation of electrical breakdown within the TVG regime is proposed, and is based upon the explosive destabilisation of trapped charge within the alumina ceramic, triggering the onset of surface-flashover along the insulator. In the main-gap prebreakdown phase, it is suggested that the electrical-breakdown of the TVG is initiated by the low-field 'stripping' of prebreakdown electrons from vacancy-defects in the ceramic under the influence of an orthogonal main-gap electric field.
Resumo:
We show that electron-phonon coupling strongly affects transport properties of the Luttinger liquid hybridized with a resonant level. Namely, this coupling significantly modifies the effective energy-dependent width of the resonant level in two different geometries, corresponding to the resonant or antiresonant transmission in the Fermi gas. This leads to a rich phase diagram for a metal-insulator transition induced by the hybridization with the resonant level.
Resumo:
We study the influence of electron-phonon coupling on electron transport through a Luttinger liquid with an embedded weak scatterer or weak link. We derive the renormalization group (RG) equations, which indicate that the directions of RG flows can change upon varying either the relative strength of the electron-electron and electron-phonon coupling or the ratio of Fermi to sound velocities. This results in a rich phase diagram with up to three fixed points: an unstable one with a finite value of conductance and two stable ones, corresponding to an ideal metal or insulator.
Resumo:
We study the influence of electron-phonon coupling on electron transport through a Luttinger liquid with an embedded weak scatterer or weak link. We derive the renormalization group (RG) equations which indicate that the directions of RG flows can change upon varying either the relative strength of the electron-electron and electron-phonon coupling or the ratio of Fermi to sound velocities. This results in the rich phase diagram with up to three fixed points: an unstable one with a finite value of conductance and two stable ones, corresponding to an ideal metal or insulator.
Resumo:
We study electronic transport in a Luttinger liquid with an embedded impurity, which is either a weak scatterer (WS) or a weak link (WL), when interacting electrons are coupled to one-dimensional massless bosons (e.g., acoustic phonons). We find that the duality relation, ?WS?WL=1, between scaling dimensions of the electron backscattering in the WS and WL limits, established for the standard Luttinger liquid, holds in the presence of the additional coupling for an arbitrary fixed strength of boson scattering from the impurity. This means that at low temperatures such a system remains either an ideal insulator or an ideal metal, regardless of the scattering strength. On the other hand, when fermion and boson scattering from the impurity are correlated, the system has a rich phase diagram that includes a metal-insulator transition at some intermediate values of the scattering.
Resumo:
An approach to transfer a high-quality Si layer for the fabrication of silicon-on-insulator wafers has been proposed based on the investigation of platelet and crack formation in hydrogenated epitaxialSi/Si0.98B0.02/Si structures grown by molecular-beam epitaxy. H-related defect formation during hydrogenation was found to be very sensitive to the thickness of the buried Si0.98B0.02 layer. For hydrogenated Si containing a 130nm thick Si0.98B0.02 layer, no platelets or cracking were observed in the B-doped region. Upon reducing the thickness of the buried Si0.98B0.02 layer to 3nm, localized continuous cracking was observed along the interface between the Si and the B-doped layers. In the latter case, the strains at the interface are believed to facilitate the (100)-oriented platelet formation and (100)-oriented crack propagation.
Resumo:
We modify a nonlinear σ model (NLσM) for the description of a granular disordered system in the presence of both the Coulomb repulsion and the Cooper pairing. We show that under certain controlled approximations the action of this model is reduced to the Ambegaokar-Eckern-Schön (AES) action, which is further reduced to the Bose-Hubbard (or “dirty-boson”) model with renormalized coupling constants. We obtain an effective action which is more general than the AES one but still simpler than the full NLσM action. This action can be applied in the region of parameters where the reduction to the AES or the Bose-Hubbard model is not justified. This action may lead to a different picture of the superconductor-insulator transition in two-dimensional systems.
Resumo:
Impedance spectroscopy (IS) analysis is carried out to investigate the electrical properties of the metal-oxide-semiconductor (MOS) structure fabricated on hydrogen-terminated single crystal diamond. The low-temperature atomic layer deposition Al2O3 is employed as the insulator in the MOS structure. By numerically analysing the impedance of the MOS structure at various biases, the equivalent circuit of the diamond MOS structure is derived, which is composed of two parallel capacitive and resistance pairs, in series connection with both resistance and inductance. The two capacitive components are resulted from the insulator, the hydrogenated-diamond surface, and their interface. The physical parameters such as the insulator capacitance are obtained, circumventing the series resistance and inductance effect. By comparing the IS and capacitance-voltage measurements, the frequency dispersion of the capacitance-voltage characteristic is discussed.
Resumo:
Background: Electrosurgery units are widely employed in modern surgery. Advances in technology have enhanced the safety of these devices, nevertheless, accidental burns are still regularly reported. This study focuses on possible causes of sacral burns as complication of the use of electrosurgery. Burns are caused by local densifications of the current, but the actual pathway of current within patient's body is unknown. Numerical electromagnetic analysis can help in understanding the issue. Methods: To this aim, an accurate heterogeneous model of human body (including seventy-seven different tissues), electrosurgery electrodes, operating table and mattress was build to resemble a typical surgery condition. The patient lays supine on the mattress with the active electrode placed onto the thorax and the return electrode on his back. Common operating frequencies of electrosurgery units were considered. Finite Difference Time Domain electromagnetic analysis was carried out to compute the spatial distribution of current density within the patient's body. A differential analysis by changing the electrical properties of the operating table from a conductor to an insulator was also performed. Results: Results revealed that distributed capacitive coupling between patient body and the conductive operating table offers an alternative path to the electrosurgery current. The patient's anatomy, the positioning and the different electromagnetic properties of tissues promote a densification of the current at the head and sacral region. In particular, high values of current density were located behind the sacral bone and beneath the skin. This did not occur in the case of non-conductive operating table. Conclusion: Results of the simulation highlight the role played from capacitive couplings between the return electrode and the conductive operating table. The concentration of current density may result in an undesired rise in temperature, originating burns in body region far from the electrodes. This outcome is concordant with the type of surgery-related sacral burns reported in literature. Such burns cannot be immediately detected after surgery, but appear later and can be confused with bedsores. In addition, the dosimetric analysis suggests that reducing the capacity coupling between the return electrode and the operating table can decrease or avoid this problem. © 2013 Bifulco et al.; licensee BioMed Central Ltd.
Resumo:
A semi-quantitative model is put forward elucidating the role of spatial inhomogeneity of charge carrier mobility in organic field-effect transistors. The model, based on electrostatic arguments, allows estimating the effective thickness of the conducting channel and its changes in function of source-drain and gate voltages. Local mobility gradients in the direction perpendicular to the insulator/semiconductor interface translate into voltage dependences of the average carrier mobility in the channel, resulting in positive or negative deviations of current-voltage characteristics from their expected shapes. The proposed effect supplements those described in the literature, i.e., density-dependent mobility of charge carriers, short-channel effects, and contribution of contact resistance.
Resumo:
Clusters are aggregations of atoms or molecules, generally intermediate in size between individual atoms and aggregates that are large enough to be called bulk matter. Clusters can also be called nanoparticles, because their size is on the order of nanometers or tens of nanometers. A new field has begun to take shape called nanostructured materials which takes advantage of these atom clusters. The ultra-small size of building blocks leads to dramatically different properties and it is anticipated that such atomically engineered materials will be able to be tailored to perform as no previous material could.^ The idea of ionized cluster beam (ICB) thin film deposition technique was first proposed by Takagi in 1972. It was based upon using a supersonic jet source to produce, ionize and accelerate beams of atomic clusters onto substrates in a vacuum environment. Conditions for formation of cluster beams suitable for thin film deposition have only recently been established following twenty years of effort. Zinc clusters over 1,000 atoms in average size have been synthesized both in our lab and that of Gspann. More recently, other methods of synthesizing clusters and nanoparticles, using different types of cluster sources, have come under development.^ In this work, we studied different aspects of nanoparticle beams. The work includes refinement of a model of the cluster formation mechanism, development of a new real-time, in situ cluster size measurement method, and study of the use of ICB in the fabrication of semiconductor devices.^ The formation process of the vaporized-metal cluster beam was simulated and investigated using classical nucleation theory and one dimensional gas flow equations. Zinc cluster sizes predicted at the nozzle exit are in good quantitative agreement with experimental results in our laboratory.^ A novel in situ real-time mass, energy and velocity measurement apparatus has been designed, built and tested. This small size time-of-flight mass spectrometer is suitable to be used in our cluster deposition systems and does not suffer from problems related to other methods of cluster size measurement like: requirement for specialized ionizing lasers, inductive electrical or electromagnetic coupling, dependency on the assumption of homogeneous nucleation, limits on the size measurement and non real-time capability. Measured ion energies using the electrostatic energy analyzer are in good accordance with values obtained from computer simulation. The velocity (v) is measured by pulsing the cluster beam and measuring the time of delay between the pulse and analyzer output current. The mass of a particle is calculated from m = (2E/v$\sp2).$ The error in the measured value of background gas mass is on the order of 28% of the mass of one N$\sb2$ molecule which is negligible for the measurement of large size clusters. This resolution in cluster size measurement is very acceptable for our purposes.^ Selective area deposition onto conducting patterns overlying insulating substrates was demonstrated using intense, fully-ionized cluster beams. Parameters influencing the selectivity are ion energy, repelling voltage, the ratio of the conductor to insulator dimension, and substrate thickness. ^
Resumo:
Typically, hermetic feedthroughs for implantable devices, such as pacemakers, use a alumina ceramic insulator brazed to a platinum wire pin. This combination of material has a long history in implantable devices and has been approved by the FDA for implantable hermetic feedthroughs. The growing demand for increased input/output (I/O) hermetic feedthroughs for implantable neural stimulator applications could be addressed by developing a new, cofired platinum/alumina multilayer ceramic technology in a configuration that supports 300 plus I/Os, which is not commercially available. Seven platinum powders with different particle sizes were used to develop different conductive cofire inks to control the densification mismatch between platinum and alumina. Firing profile (ramp rate, burn- out and holding times) and firing atmosphere and concentrations (hydrogen (wet/dry), air, neutral, vacuum) were also optimized. Platinum and alumina exhibit the alloy formation reaction in a reduced atmosphere. Formation of any compound can increase the bonding of the metal/ceramic interface, resulting in enhanced hermeticity. The feedthrough fabricated in a reduced atmosphere demonstrated significantly superior performance than that of other atmospheres. A composite structure of tungsten/platinum ratios graded thru the via structure (pure W, 50/50 W/Pt, 80/20 Pt/W and pure Pt) exhibited the best performance in comparison to the performance of other materials used for ink metallization. Studies on the high temperature reaction of platinum and alumina, previously unreported, showed that, at low temperatures in reduced atmosphere, Pt 3Al or Pt8Al21 with a tetragonal structure would be formed. Cubic Pt3Al is formed upon heating the sample to temperatures above 1350 °C. This cubic structure is the equilibrium state of Pt-Al alloy at high temperatures. The alumina dissolves into the platinum ink and is redeposited as a surface coating. This was observed on both cofired samples and pure platinum thin films coated on a 99.6 Wt% alumina and fired at 1550 °C. Different mechanisms are proposed to describe this behavior based on the size of the platinum particle