927 resultados para INHIBITOR NAMI-A
Resumo:
A commercial corrosion inhibitor used in petroleum production was characterized by means of infrared spectroscopy and energy dispersive spectroscopy (EDS). Predicting the adsorption behavior of corrosion inhibitor onto steel, sandstone and esmectite is the key to improve working conditions. In this study, the adsorption kinetics of inhibitor formulations in HCl 15% or in Mud Acid (HCl 13,5% and ammonium bifluoride) onto steel, sandstone and esmectite was determined by means of spectrophotometry. Kinetic parameters indicated that adsorption of inhibitor in the presence of bifluoride was favored. Moreover, the adsorption constant rate was the largest when the substrate was esmectite.
Resumo:
A simple and fast capillary zone electrophoresis (CZE) method has been developed and validated for quantification of a non-nucleoside reverse transcriptase inhibitor (NNRTI) nevirapine, in pharmaceuticals. The analysis was optimized using 10 mmol L-1 sodium phosphate buffer pH 2.5, +25 kV applied voltage, hydrodynamic injection 0.5 psi for 5 s and direct UV detection at 200 µm. Diazepam (50.0 µg mL-1) was used as internal standard. Under these conditions, nevirapine was analyzed in approximately less than 2.5 min. The analytical curve presented a coefficient of correlation of 0.9994. Limits of detection and quantification were 1.4 µg mL-1 and 4.3 µg mL-1, respectively. Intra- and inter-day precision expressed as relative standard deviations were 1.4% and 1.3%, respectively and the mean recovery was 100.81%. The active pharmaceutical ingredient was subjected to hydrolysis (acid, basic and neutral) and oxidative stress conditions. No interference of degradation products and tablet excipients were observed. This method showed to be rapid, simple, precise, accurate and economical for determination of nevirapine in pharmaceuticals and it is suitable for routine quality control analysis since CE offers benefits in terms of quicker method development and significantly reduced operating costs.
Resumo:
The exacerbation of the oxidative stress and of the polyol pathway which impair damage myenteric plexus are metabolic characteristics of diabetes. The ascorbic acid (AA) is an antioxidant and an aldose reductase inhibitor, which may act as neuroprotector. The effects of AA supplementation on the density and cellular body profile area (CP) of myenteric neurons in STZ-induced diabetes in rats were assessed. Four groups with five animals each were formed: normoglycemic (C); diabetic (D); AA-treated diabetic (DS) and AA-treated normoglycemic (CS). Dosagen of 50mg of AA were given, three times a week, for each animal (group DS and CS). Ninety days later and after euthanasia, the ileum was collected and processed for the NADPH-diaphorase technique. There were no differences (P>0.05) in the neuronal density among the groups. The CP area was lower (P<0.05) in the DS and CS groups, with a higher incidence of neurons with a CP area exceeding 200µm² for groups C and D. The AA had no influence on the neuronal density in the ileum but had a neuroprotective effect, preventing the increase in the CP area and allowing a higher number of neurons with a CP area with less than 200µm².
Resumo:
Bloodsucking parasites such as ticks have evolved a wide variety of immunomodulatory proteins that are secreted in their saliva, allowing them to feed for long periods of time without being detected by the host immune system. One possible strategy used by ticks to evade the host immune response is to produce proteins that selectively bind and neutralize the chemokines that normally recruit cells of the innate immune system that protect the host from parasites. We have identified distinct cDNAs encoding novel chemokine binding proteins (CHPBs), which we have termed Evasins, using an expression cloning approach. These CHBPs have unusually stringent chemokine selectivity, differentiating them from broader spectrum viral CHBPs. Evasin-1 binds to CCL3, CCL4, and CCL18; Evasin-3 binds to CXCL8 and CXCL1; and Evasin-4 binds to CCL5 and CCL11. We report the characterization of Evasin-1 and -3, which are unrelated in primary sequence and tertiary structure, and reveal novel folds. Administration of recombinant Evasin-1 and - 3 in animal models of disease demonstrates that they have potent antiinflammatory properties. These novel CHBPs designed by nature are even smaller than the recently described single-domain antibodies (Hollinger, P., and P. J. Hudson. 2005. Nat. Biotechnol. 23: 1126-1136), and may be therapeutically useful as novel antiinflammatory agents in the future.
Resumo:
The health-relevant functionality of 10 thermally processed Peruvian Andean grains (five cereals, three pseudocereals, and two legumes) was evaluated for potential type 2 diabetes-relevant antihyperglycemia and antihypertension activity using in vitro enzyme assays. Inhibition of enzymes relevant for managing early stages of type 2 diabetes such as hyperglycemia-relevant alpha-glucosidase and alpha-amylase and hypertension-relevant angiotensin I-converting enzyme (ACE) were assayed along with the total phenolic content, phenolic profiles, and antioxidant activity based on the 1,1-diphenyl-2-picrylhydrazyl radical assay. Purple corn (Zea mays L.) (cereal) exhibited high free radical scavenging-linked antioxidant activity (77%) and had the highest total phenolic content (8 +/- 1 mg of gallic acid equivalents/g of sample weight) and alpha-glucosidase inhibitory activity (51% at 5 mg of sample weight). The major phenolic compound in this cereal was protocatechuic acid (287 +/- 15 mu g/g of sample weight). Pseudocereals such as Quinoa (Chenopodium quinoa Willd) and Kaniwa (Chenopodium pallidicaule Aellen) were rich in quercetin derivatives (1,131 +/- 56 and 943 +/- 35 mu g [expressed as quercetin aglycone]/g of sample weight, respectively) and had the highest antioxidant activity (86% and 75%, respectively). Andean legumes (Lupinus mutabilis cultivars SLP-1 and H-6) inhibited significantly the hypertension-relevant ACE (52% at 5 mg of sample weight). No alpha-amylase inhibitory activity was found in any of the evaluated Andean grains. This in vitro study indicates the potential of combination of Andean whole grain cereals, pseudocereals, and legumes to develop effective dietary strategies for managing type 2 diabetes and associated hypertension and provides the rationale for animal and clinical studies.
Resumo:
Commonly consumed carbohydrate sweeteners derived from sugar cane, palm, and corn (syrups) were investigated to determine their potential to inhibit key enzymes relevant to Type 2 diabetes and hypertension based on the total phenolic content and antioxidant activity using in vitro models. Among sugar cane derivatives, brown sugars showed higher antidiabetes potential than white sugars; nevertheless, no angiotensin I-converting enzyme (ACE) inhibition was detected in both sugar classes. Brown sugar from Peru and Mauritius (dark muscovado) had the highest total phenolic content and 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity, which correlated with a moderate inhibition of yeast alpha-glucosidase without showing a significant effect on porcine pancreatic alpha-amylase activity. In addition, chlorogenic acid quantified by high-performance liquid chromatography was detected in these sugars (128 +/- 6 and 144 +/- 2 mu g/g of sample weight, respectively). Date sugar exhibited high alpha-glucosidase, alpha-amylase, and ACE inhibitory activities that correlated with high total phenolic content and antioxidant activity. Neither phenolic compounds or antioxidant activity was detected in corn syrups, indicating that nonphenolic factors may be involved in their significant ability to inhibit alpha-glucosidase, alpha-amylase, and ACE. This study provides a strong biochemical rationale for further in vivo studies and useful information to make better dietary sweetener choices for Type 2 diabetes and hypertension management.
Resumo:
Dihydroorotate dehydrogenase (DHODH) catalyzes the oxidation of dihydroorotate to orotate during the fourth step of the de novo pyrimidine synthesis pathway. In rapidly proliferating mammalian cells, pyrimidine salvage pathway is insufficient to overcome deficiencies in that pathway for nucleotide synthesis. Moreover, as certain parasites lack salvage enzymes, relying solely on the de novo pathway, DHODH inhibition has turned out as an efficient way to block pyrimidine biosynthesis. Escherichia coli DHODH (EcDHODH) is a class 2 DHODH, found associated to cytosolic membranes through an N-terminal extension. We used electronic spin resonance (ESR) to study the interaction of EcDHODH with vesicles of 1,2-dioleoyl-sn-glycero-phosphatidylcholine/detergent. Changes in vesicle dynamic structure induced by the enzyme were monitored via spin labels located at different positions of phospholipid derivatives. Two-component ESR spectra are obtained for labels 5- and 1 0-phosphatidylcholine in presence of EcDHODH, whereas other probes show a single-component spectrum. The appearance of an additional spectral component with features related to fast-motion regime of the probe is attributed to the formation of a defect-like structure in the membrane hydrophobic region. This is probably the mechanism used by the protein to capture quinones used as electron acceptors during catalysis. The use of specific spectral simulation routines allows us to characterize the ESR spectra in terms of changes in polarity and mobility around the spin-labeled phospholipids. We believe this is the first report of direct evidences concerning the binding of class 2 DHODH to membrane systems.
Resumo:
Cyclic pseudo-galactooligosaccharides were synthesized by cyclooligomerisation of isomeric azido-alkyne derivatives of beta-D-galactopyranose under Cu(I)-catalysed azide-alkyne 1,3-dipolar cycloaddition reaction conditions. The principal products isolated were cyclic dimers and trimers, with lower amounts of cyclic tetramer and pentamer also evident in some cases. Molecular mechanics calculations suggest very compact but flexible structures for the cyclic trimers, with secondary OH groups exposed outside the macrocycle and available for enzymatic glycosylation. The cyclic dimers and trimers represent a new type of acceptor substrate for Trypanosoma cruzi trans-sialidase, giving rise to doubly and triply sialylated glycomacrocycles, respectively.
Resumo:
The immunogenic properties of cysteine proteases obtained from excretory/secretory products (ES) of Haemonchus contortus were investigated with a fraction purified with a recombinant H. contortus cystatin affinity column. The enrichment of H. contortus ES for cysteine protease was confirmed with substrate SDS-PAGE gels since the cystatin-binding fraction activity was three times higher than total ES, despite representing only 3% of total ES. This activity was inhibited by a specific cysteine protease inhibitor (E64) and by recombinant cystatin. The one-dimensional profile of the cystatin-binding fraction displayed a single band with a molecular mass of 43 kDa. Mass spectrometry showed this to be AC-5, a cathepsin B-like cysteine protease which had not been identified in ES products of H. contortus before. The cystatin binding fraction was tested as an immunogen in lambs which were vaccinated three times (week 0, 2.5 and 5), challenged with 10 000 L3 H. contortus (week 6) before necropsy and compared to unvaccinated challenge controls and another group given total ES (n = 10 per group). The group vaccinated with cystatin-binding proteins showed 36% and 32% mean worm burden and eggs per gram of faeces (EPG) reductions, respectively, compared to the controls but total ES was almost without effect. After challenge the cystatin-binding proteins induced significantly higher local and systemic ES specific IgA and IgG responses.
Resumo:
We have adapted an actin-mosin motility assay to examine the interactions in vitro between actin cables isolated from the giant internodal cells of the freshwater alga, Nitella, and pigment granules extracted from red ovarian chromatophores of the freshwater palaemonid shrimp, Macrobrachium olfersi. The chromatophore pigment mass consists of large (0.5-1.0-mu m diameter) membrane-bounded granules, and small (140-nm diameter), a membranous granules, both structurally continuous with the abundant smooth endoplasmic reticulum. Our previous immunocytochemical studies show a myosin motor to be stably associated with the pigment mass; however, to which granule type or membrane the myosin motor is attached is unclear. Here, we show that sodium vanadate, a myosin ATPase inhibitor, markedly increases the affinity of isolated, large, membrane-bounded granules for Nitella actin cables to which they become permanently attached. This interaction does not occur in granule preparations containing ATP with uninhibited, active myosin without vanadate. We propose that a stable state of elevated affinity is established between the granule-located myosin motor and the Nitella actin cables, resulting from a vanadate-inhibited acto-myosin-ADP complex. This finding provides further evidence for a myosin motor positioned on the surface of the membrane-bounded pigment granules in shrimp ovarian chromatophores.
Resumo:
AIM: To establish the efficacy and safety of a 7-d therapeutic regimen using omeprazole, bismuth suticitrate, furazolidone and amoxicillin in patients with peptic ulcer disease who had been previously treated with other therapeutic regimens without success. METHODS: Open cohort study which included patients with peptic ulcer who had previously been treated unsuccessfully with one or more eradication regimens. The therapeutic regimen consisted of 20 mg omeprazole, 240 mg colloidal bismuth subcitrate, 1000 mg amoxicillin, and 200 mg furazolidone, taken twice a day for 7 d. Patients were considered as eradicated when samples taken from the gastric antrum and corpus 12 wk after the end of treatment were negative for Helicobacter pylori (H pylori) (rapid urease test and histology). Safety was determined by the presence of adverse effects. RESULTS: Fifty-one patients were enrolled. The eradication rate was 68.8% (31/45). Adverse effects were reported by 31.4% of the patients, and these were usually considered to be slight or moderate in the majority of the cases. Three patients had to withdraw from the treatment due to the presence of severe adverse effects. CONCLUSION: The association of bismuth, furazolidone, amoxicillin and a proton-pump inhibitor is a valuable alternative for patients who failed to respond to other eradication regimens. It is an effective, cheap and safe option for salvage therapy of positive patients. (C) 2008 The WJG Press. All rights reserved.
Resumo:
Background: The Brazilian consensus recommends a short-term treatment course with clarithromycin, amoxicillin and proton-pump inhibitor for the eradication of Helicobacter pylori ( H. pylori). This treatment course has good efficacy, but cannot be afforded by a large part of the population. Azithromycin, amoxicillin and omeprazole are subsidized, for several aims, by the Brazilian federal government. Therefore, a short-term treatment course that uses these drugs is a low-cost one, but its efficacy regarding the bacterium eradication is yet to be demonstrated. The study's purpose was to verify the efficacy of H. pylori eradication in infected patients who presented peptic ulcer disease, using the association of azithromycin, amoxicillin and omeprazole. Methods: Sixty patients with peptic ulcer diagnosed by upper digestive endoscopy and H. pylori infection documented by rapid urease test, histological analysis and urea breath test were treated for six days with a combination of azithromycin 500 mg and omeprazole 20 mg, in a single daily dose, associated with amoxicillin 500 mg 3 times a day. The eradication control was carried out 12 weeks after the treatment by means of the same diagnostic tests. The eradication rates were calculated with 95% confidence interval. Results: The eradication rate was 38% per intention to treat and 41% per protocol. Few adverse effects were observed and treatment compliance was high. Conclusion: Despite its low cost and high compliance, the low eradication rate does not allow the recommendation of the triple therapy with azithromycin as an adequate treatment for H. pylori infection.
Resumo:
Objectives: We tested whether angiotensin converting enzyme (ACE) and phosphorylation of Ser(1270) are involved in shear-stress (SS)-induced downregulation of the enzyme. Methods and Results: Western blotting analysis showed that SS (18 h, 15 dyn/cm(2)) decreases ACE expression and phosphorylation as well as p-JNK inhibition in human primary endothelial cells (EC). CHO cells expressing wild-type ACE (wt-ACE) also displayed SS-induced decrease in ACE and p-JNK. Moreover, SS decreased ACE promoter activity in wt-ACE, but had no effect in wild type CHO or CHO expressing ACE without either the extra-or the intracellular domains, and decreased less in CHO expressing a mutated ACE at Ser(1270) compared to wt-ACE (13 vs. 40%, respectively). The JNK inhibitor (SP600125, 18 h), in absence of SS, also decreased ACE promoter activity in wt-ACE. Finally, SS-induced inhibition of ACE expression and phosphorylation in EC was counteracted by simultaneous exposure to an ACE inhibitor. Conclusions: ACE displays a key role on its own downregulation in response to SS. This response requires both the extra- and the intracellular domains and ACE Ser(1270), consistent with the idea that the extracellular domain behaves as a mechanosensor while the cytoplasmic domain elicits the downstream intracellular signaling by phosphorylation on Ser(1270).
Resumo:
Galectin-3 is a beta-galactoside-binding protein that has been shown to regulate pathophysiological processes, including cellular activation, differentiation and apoptosis. Recently, we showed that galectin-3 acts as a potent inhibitor of B cell differentiation into plasma cells. Here, we have investigated whether galectin-3 interferes with the lymphoid organization of B cell compartments in mesenteric lymph nodes (MLNs) during chronic schistosomiasis, using WT and galectin-3(-/-) mice. Schistosoma mansoni synthesizes GalNAc beta 1-4(Fuc alpha 1-3) GlcNAc(Lac-DiNAc) structures (N-acetylgalactosamine beta 1-4 N-acetylglucosamine), which are known to interact with galectin-3 and elicit an intense humoral response. Antigens derived from the eggs and adult worms are continuously drained to MLNs and induce a polyclonal B cell activation. In the present work, we observed that chronically-infected galectin-3(-/-) mice exhibited a significant reduced amount of macrophages and B lymphocytes followed by drastic histological changes in B lymphocyte and plasma cell niches in the MLNs. The lack of galectin-3 favored an increase in the lymphoid follicle number, but made follicular cells more susceptible to apoptotic stimuli. There were an excessive quantity of apoptotic bodies, higher number of annexin V(+)/PI(-) cells, and reduced clearance of follicular apoptotic cells in the course of schistosomiasis. Here, we observed that galectin-3 was expressed in nonlymphoid follicular cells and its absence was associated with severe damage to tissue architecture. Thus, we convey new information on the role of galectin-3 in regulation of histological events associated with B lymphocyte and plasma cell niches, apoptosis, phagocytosis and cell cycle properties in the MLNs of mice challenged with S. mansoni.
Resumo:
Background: Theracyte is a polytetrafluoroethylene membrane macroencapsulation system designed to induce neovascularization at the tissue interface, protecting the cells from host's immune rejection, thereby circumventing the problem of limited half-life and variation in circulating levels. Endostatin is a potent inhibitor of angiogenesis and tumor growth. Continuous delivery of endostatin improves the efficacy and potency of the antitumoral therapy. The purpose of this study was to determine whether recombinant fibroblasts expressing endostatin encapsulated in Theracyte immunoisolation devices can be used for delivery of this therapeutic protein for treatment of mice bearing B16F10 melanoma and Ehrlich tumors. Results: Mice were inoculated subcutaneously with melanoma (B16F10 cells) or Ehrlich tumor cells at the foot pads. Treatment began when tumor thickness had reached 0.5 mm, by subcutaneous implantation of 10(7) recombinant encapsulated or non-encapsulated endostatin producer cells. Similar melanoma growth inhibition was obtained for mice treated with encapsulated or non-encapsulated endostatin-expressing cells. The treatment of mice bearing melanoma tumor with encapsulated endostatin-expressing cells was decreased by 50.0%, whereas a decrease of 56.7% in tumor thickness was obtained for mice treated with non-encapsulated cells. Treatment of Ehrlich tumor-bearing mice with non-encapsulated endostatin-expressing cells reduced tumor thickness by 52.4%, whereas lower tumor growth inhibition was obtained for mice treated with encapsulated endostatin-expressing cells: 24.2%. Encapsulated endostatin-secreting fibroblasts failed to survive until the end of the treatment. However, endostatin release from the devices to the surrounding tissues was confirmed by immunostaining. Decrease in vascular structures, functional vessels and extension of the vascular area were observed in melanoma microenvironments. Conclusions: This study indicates that immunoisolation devices containing endostatin-expressing cells are effective for the inhibition of the growth of melanoma and Ehrlich tumors. Macroencapsulation of engineered cells is therefore a reliable platform for the refinement of innovative therapeutic strategies against tumors.