911 resultados para INGENIERÍA DEL TRANSPORTE
Resumo:
La situación energética actual es insostenible y como consecuencia se plantea un escenario próximo orientado a conseguir un futuro energético sostenible que permita el desarrollo económico y el bienestar social. La situación ambiental actual está afectada directamente por la combustión de combustibles fósiles que en 2013 constituyeron el 81% de la energía primaria utilizada por el ser humano y son la principal fuente antropogénica de gases de efecto invernadero. Los informes del IPCC1, ponen de manifiesto que el cambio climático se ha consolidado durante los últimos años y en la conferencia de la ONU sobre cambio climático de París que se celebrará a finales de 2015, se pretende que los gobiernos suscriban un acuerdo universal para limitar las emisiones de gases de efecto invernadero y evitar que el incremento de la temperatura media global supere los 2°C. Por otra parte, en el interior de las ciudades es especialmente preocupante, por su efecto directo sobre la salud humana, el impacto ambiental producido por las emisiones de NOx que generan el transporte de personas y mercancías. El sector del transporte fue responsable en 2012 del 27,9% del consumo final de energía. Una vez expuesto el escenario energético y ambiental actual, en esta tesis, se analiza la eficiencia de un sistema autónomo fotovoltaico para la carga de baterías de vehículos eléctricos y el uso del mismo con otras cargas, con el objetivo de aprovechar al máximo la energía eléctrica generada y contribuir a la utilización de energía limpia que no produzca impacto ambiental. Como primer paso para el desarrollo de la tesis se hizo un estudio de trabajos previos comenzando por las primeras aplicaciones de la energía fotovoltaica en los vehículos solares para después pasar a trabajos más recientes enfocados al suministro de energía a los vehículos eléctricos. También se hizo este estudio sobre las metodologías de simulación en los sistemas fotovoltaicos y en el modelado de distintos componentes. Posteriormente se eligieron, dentro de la amplia oferta existente en el mercado, los componentes con características técnicas más adecuadas para este tipo de instalaciones y para las necesidades que se pretenden cubrir. A partir de los parámetros técnicos de los componentes elegidos para configurar la instalación autónoma y utilizando modelos contrastados de distintos componentes, se ha desarrollado un modelo de simulación en ordenador del sistema completo con el que se han hecho simulaciones con distintos modos de demanda de energía eléctrica, según los modos de carga disponibles en el vehículo eléctrico para corriente alterna monofásica de 230 V. También se han simulado distintos tamaños del generador fotovoltaico y del sistema de acumulación de energía eléctrica para poder determinar la influencia de estos parámetros en los balances energéticos del sistema. Utilizando recursos propios el doctorando ha realizado la instalación real de un sistema fotovoltaico que incluye sistema de acumulación e inversor en un edificio de su propiedad. Para la realización de la tesis, La Fundación de Fomento e Innovación Industrial (F2I2) ha facilitado al doctorando un dispositivo que permite realizar la alimentación del vehículo eléctrico en modo 2 (este modo emplea un adaptador que incorpora dispositivos de seguridad y se comunica con el vehículo permitiendo ajustar la velocidad de recarga) y que ha sido necesario para los trabajos desarrollados. Se ha utilizado la red eléctrica como sistema de apoyo de la instalación fotovoltaica para permitir la recarga en el modo 2 que requiere más potencia que la proporcionada por el sistema fotovoltaico instalado. Se han analizado mediante simulación distintos regímenes de carga que se han estudiado experimentalmente en la instalación realizada, a la vez que se han hecho ensayos que se han reproducido mediante simulación con los mismos valores de radiación solar y temperatura con objeto de contrastar el modelo. Se han comparado los resultados experimentales con los obtenidos mediante simulación con objeto de caracterizar el comportamiento del sistema de acumulación (energía eléctrica suministrada y tensión de salida en las baterías) y del generador fotovoltaico (energía eléctrica fotovoltaica suministrada). Por último, se ha realizado un estudio económico de la instalación autónoma fotovoltaica ejecutada y simulada. En el mismo se ha planteado la utilización de fondos propios (como realmente se ha llevado a cabo) y la utilización de financiación, para determinar dos posibles escenarios que pudieran ser de utilidad a un propietario de vehículo eléctrico. Se han comparado los resultados obtenidos en los dos escenarios propuestos del estudio económico del sistema, en cuanto a los parámetros de tiempo de retorno de la inversión, valor actual neto de la inversión y tasa interna de retorno de la misma. Las conclusiones técnicas obtenidas, permiten la utilización del sistema con los modos de carga ensayados y otro tipo de cargas que aprovechen la generación eléctrica del sistema. Las baterías ofrecen mejor comportamiento cuando el aporte fotovoltaico está presente, pero no considera adecuado la conexión de cargas elevadas a un sistema de acumulación de gel (plomo-acido) como el que se ha utilizado, debido al comportamiento de este tipo de baterías ante demandas de intensidad de corriente eléctrica elevadas. Por otra parte, el comportamiento de este tipo de baterías con valores de intensidad de corriente eléctrica inferiores a 10 A en ausencia de energía fotovoltaica, con el objetivo de utilizar la generación de energía eléctrica diaria acumulada en el sistema, sí resulta interesante y ofrece un buen comportamiento del sistema de acumulación. Las circunstancias actuales de mercado, que carece de sistemas de acumulación de litio con precios de compra interesantes, no han permitido poder experimentar este sistema de acumulación en la instalación autónoma fotovoltaica ejecutada, tampoco se ha podido obtener el favor de ningún fabricante para ello. Actualmente hay disponibles sistemas de acumulación en litio que no se comercializan en España y que serían adecuados para el sistema de acumulación de energía propuesto en este estudio, que deja abierta las puertas para futuros trabajos de investigación. Las conclusiones económicas obtenidas, rentabilizan el uso de una instalación autónoma fotovoltaica con consumo instantáneo, sin acumulación de energía eléctrica. El futuro de conexión a red por parte de estas instalaciones, cuando se regule, aportará un incentivo económico para rentabilizar con menos tiempo las instalaciones autónomas fotovoltaicas, esto también deja la puerta abierta a futuros trabajos de investigación. El sistema de acumulación de energía aporta el mayor peso económico de inversión en este tipo de instalaciones. La instalación estudiada aporta indicadores económicos que la hacen rentable, pero se necesitaría que los precios de acumulación de la energía en sistemas eficientes estén comprendidos entre 100-200 €/kWh para que el sistema propuesto en este trabajo resulte atractivo a un potencial propietario de un vehículo eléctrico. ABSTRACT The current energy situation is untenable; it poses a scenario next focused on reaching a sustainable energy future, to allow economic development and social welfare. The environmental current situation is affected directly by the combustion of fossil fuels that in 2013 constituted 81 % of the primary energy used by the human being and they are the principal source human of greenhouse gases. The reports of the IPCC2, they reveal that the climate change has consolidated during the last years and in the conference of the UNO on climate change of Paris that will be celebrated at the end of 2015, there is claimed that the governments sign a universal agreement to limit the emission of greenhouse gases and to prevent that the increase of the global average temperature overcomes them 2°C. On the other hand, inside the cities it is specially worrying, for his direct effect on the human health, the environmental impact produced by the NOx emissions that generate the persons' transport and goods. The sector of the transport was responsible in 2012 of 27,9 % of the final consumption of energy. Once exposed the scenario and present environmental energy, in this thesis, it has analyzed the efficiency of an autonomous photovoltaic system for charging electric vehicles, and the use of the same with other workloads, with the objective to maximize the electrical energy generated and contribute to the use of clean energy that does not produce environmental impact. Since the first step for the development of the thesis did to itself a study of previous works beginning for the first applications of the photovoltaic power in the solar vehicles later to go on to more recent works focused on the power supply to the electrical vehicles. Also this study was done on the methodologies of simulation in the photovoltaic systems and in the shaped one of different components. Later they were chosen, inside the wide existing offer on the market, the components with technical characteristics more adapted for this type of facilities and for the needs that try to cover. From the technical parameters of the components chosen to form the autonomous installation and using models confirmed of different components, a model of simulation has developed in computer of the complete system with which simulations have been done by different manners of demand of electric power, according to the available manners of load in the electrical vehicle for single-phase alternating current of 230 V. Also there have been simulated different sizes of the photovoltaic generator and of the system of accumulation of electric power to be able to determine the influence of these parameters in the energy balances of the system. Using own resources the PhD student has realized a real installation of a photovoltaic system that includes system of accumulation and investing in a building of his property. For the accomplishment of the thesis, The Foundation of Promotion and Industrial Innovation (F2I2) it has facilitated to the PhD student a device that allows to realize the supply of the electrical vehicle in way 2 (this way uses an adapter that incorporates safety devices and communicates with the vehicle allowing to fit the speed of recharges) and that has been necessary for the developed works. The electrical network has been in use as system of support of the photovoltaic installation for allowing it her recharges in the way 2 that more power needs that provided by the photovoltaic installed system. There have been analyzed by means of simulation different rate of load that have been studied experimentally in the realized installation, simultaneously that have done to themselves tests that have reproduced by means of simulation with the same values of solar radiation and temperature in order the model contrasted. The experimental results have been compared by the obtained ones by means of simulation in order to characterize the behavior of the system of accumulation (supplied electric power and tension of exit in the batteries) and of the photovoltaic generator (photovoltaic supplied electric power). Finally, there has been realized an economic study of the autonomous photovoltaic executed and simulated installation. In the same one there has appeared the utilization of own funds (since really it has been carried out) and the utilization of financing, to determine two possible scenes that could be of usefulness to an owner of electrical vehicle. There have been compared the results obtained in both scenes proposed of the economic study of the system, as for the parameters of time of return of the investment, current clear value of the investment and rate hospitalizes of return of the same one. The technical obtained conclusions, they make the utilization of the system viable with the manners of load tested and another type of loads of that they take advantage the electrical generation of the system. The batteries offer better behavior when the photovoltaic contribution is present, but he does not consider to be suitable the connection of loads risen up to a system of accumulation of gel (lead - acid) as the one that has been in use, due to the behavior of this type of batteries before demands of intensity of electrical current raised. On the other hand, the behavior of this type of batteries with low values of intensity of electrical current to 10 To in absence of photovoltaic power, with the aim to use the generation of daily electric power accumulated in the system, yes turns out to be interesting and offers a good behavior of the system of accumulation. The current circumstances of market, which lacks systems of accumulation of lithium with interesting purchase prices, have not allowed to be able to experience this system of accumulation in the autonomous photovoltaic executed installation, neither one could have obtained the favor of any manufacturer for it. Nowadays there are available systems of accumulation in lithium that is not commercialized in Spain and that they would be adapted for the system of accumulation of energy proposed in this study, which makes the doors opened for future works of investigation. The economic obtained conclusions; they make more profitable the use of an autonomous photovoltaic installation with instantaneous consumption, without accumulation of electric power. The future of connection to network on the part of these facilities, when it is regulated, will contribute an economic incentive to make profitable with less time the autonomous photovoltaic facilities, this also leaves the door opened for future works of investigation. The system of accumulation of energy contributes the major economic weight of investment in this type of facilities. The studied installation contributes economic indicators that make her profitable, but it would be necessary that the prices of accumulation of the energy in efficient systems are understood between 100-200 € in order that the system proposed in this work turns out to be attractive to a proprietary potential of an electrical vehicle.
Resumo:
In recent decades, full electric and hybrid electric vehicles have emerged as an alternative to conventional cars due to a range of factors, including environmental and economic aspects. These vehicles are the result of considerable efforts to seek ways of reducing the use of fossil fuel for vehicle propulsion. Sophisticated technologies such as hybrid and electric powertrains require careful study and optimization. Mathematical models play a key role at this point. Currently, many advanced mathematical analysis tools, as well as computer applications have been built for vehicle simulation purposes. Given the great interest of hybrid and electric powertrains, along with the increasing importance of reliable computer-based models, the author decided to integrate both aspects in the research purpose of this work. Furthermore, this is one of the first final degree projects held at the ETSII (Higher Technical School of Industrial Engineers) that covers the study of hybrid and electric propulsion systems. The present project is based on MBS3D 2.0, a specialized software for the dynamic simulation of multibody systems developed at the UPM Institute of Automobile Research (INSIA). Automobiles are a clear example of complex multibody systems, which are present in nearly every field of engineering. The work presented here benefits from the availability of MBS3D software. This program has proven to be a very efficient tool, with a highly developed underlying mathematical formulation. On this basis, the focus of this project is the extension of MBS3D features in order to be able to perform dynamic simulations of hybrid and electric vehicle models. This requires the joint simulation of the mechanical model of the vehicle, together with the model of the hybrid or electric powertrain. These sub-models belong to completely different physical domains. In fact the powertrain consists of energy storage systems, electrical machines and power electronics, connected to purely mechanical components (wheels, suspension, transmission, clutch…). The challenge today is to create a global vehicle model that is valid for computer simulation. Therefore, the main goal of this project is to apply co-simulation methodologies to a comprehensive model of an electric vehicle, where sub-models from different areas of engineering are coupled. The created electric vehicle (EV) model consists of a separately excited DC electric motor, a Li-ion battery pack, a DC/DC chopper converter and a multibody vehicle model. Co-simulation techniques allow car designers to simulate complex vehicle architectures and behaviors, which are usually difficult to implement in a real environment due to safety and/or economic reasons. In addition, multi-domain computational models help to detect the effects of different driving patterns and parameters and improve the models in a fast and effective way. Automotive designers can greatly benefit from a multidisciplinary approach of new hybrid and electric vehicles. In this case, the global electric vehicle model includes an electrical subsystem and a mechanical subsystem. The electrical subsystem consists of three basic components: electric motor, battery pack and power converter. A modular representation is used for building the dynamic model of the vehicle drivetrain. This means that every component of the drivetrain (submodule) is modeled separately and has its own general dynamic model, with clearly defined inputs and outputs. Then, all the particular submodules are assembled according to the drivetrain configuration and, in this way, the power flow across the components is completely determined. Dynamic models of electrical components are often based on equivalent circuits, where Kirchhoff’s voltage and current laws are applied to draw the algebraic and differential equations. Here, Randles circuit is used for dynamic modeling of the battery and the electric motor is modeled through the analysis of the equivalent circuit of a separately excited DC motor, where the power converter is included. The mechanical subsystem is defined by MBS3D equations. These equations consider the position, velocity and acceleration of all the bodies comprising the vehicle multibody system. MBS3D 2.0 is entirely written in MATLAB and the structure of the program has been thoroughly studied and understood by the author. MBS3D software is adapted according to the requirements of the applied co-simulation method. Some of the core functions are modified, such as integrator and graphics, and several auxiliary functions are added in order to compute the mathematical model of the electrical components. By coupling and co-simulating both subsystems, it is possible to evaluate the dynamic interaction among all the components of the drivetrain. ‘Tight-coupling’ method is used to cosimulate the sub-models. This approach integrates all subsystems simultaneously and the results of the integration are exchanged by function-call. This means that the integration is done jointly for the mechanical and the electrical subsystem, under a single integrator and then, the speed of integration is determined by the slower subsystem. Simulations are then used to show the performance of the developed EV model. However, this project focuses more on the validation of the computational and mathematical tool for electric and hybrid vehicle simulation. For this purpose, a detailed study and comparison of different integrators within the MATLAB environment is done. Consequently, the main efforts are directed towards the implementation of co-simulation techniques in MBS3D software. In this regard, it is not intended to create an extremely precise EV model in terms of real vehicle performance, although an acceptable level of accuracy is achieved. The gap between the EV model and the real system is filled, in a way, by introducing the gas and brake pedals input, which reflects the actual driver behavior. This input is included directly in the differential equations of the model, and determines the amount of current provided to the electric motor. For a separately excited DC motor, the rotor current is proportional to the traction torque delivered to the car wheels. Therefore, as it occurs in the case of real vehicle models, the propulsion torque in the mathematical model is controlled through acceleration and brake pedal commands. The designed transmission system also includes a reduction gear that adapts the torque coming for the motor drive and transfers it. The main contribution of this project is, therefore, the implementation of a new calculation path for the wheel torques, based on performance characteristics and outputs of the electric powertrain model. Originally, the wheel traction and braking torques were input to MBS3D through a vector directly computed by the user in a MATLAB script. Now, they are calculated as a function of the motor current which, in turn, depends on the current provided by the battery pack across the DC/DC chopper converter. The motor and battery currents and voltages are the solutions of the electrical ODE (Ordinary Differential Equation) system coupled to the multibody system. Simultaneously, the outputs of MBS3D model are the position, velocity and acceleration of the vehicle at all times. The motor shaft speed is computed from the output vehicle speed considering the wheel radius, the gear reduction ratio and the transmission efficiency. This motor shaft speed, somehow available from MBS3D model, is then introduced in the differential equations corresponding to the electrical subsystem. In this way, MBS3D and the electrical powertrain model are interconnected and both subsystems exchange values resulting as expected with tight-coupling approach.When programming mathematical models of complex systems, code optimization is a key step in the process. A way to improve the overall performance of the integration, making use of C/C++ as an alternative programming language, is described and implemented. Although this entails a higher computational burden, it leads to important advantages regarding cosimulation speed and stability. In order to do this, it is necessary to integrate MATLAB with another integrated development environment (IDE), where C/C++ code can be generated and executed. In this project, C/C++ files are programmed in Microsoft Visual Studio and the interface between both IDEs is created by building C/C++ MEX file functions. These programs contain functions or subroutines that can be dynamically linked and executed from MATLAB. This process achieves reductions in simulation time up to two orders of magnitude. The tests performed with different integrators, also reveal the stiff character of the differential equations corresponding to the electrical subsystem, and allow the improvement of the cosimulation process. When varying the parameters of the integration and/or the initial conditions of the problem, the solutions of the system of equations show better dynamic response and stability, depending on the integrator used. Several integrators, with variable and non-variable step-size, and for stiff and non-stiff problems are applied to the coupled ODE system. Then, the results are analyzed, compared and discussed. From all the above, the project can be divided into four main parts: 1. Creation of the equation-based electric vehicle model; 2. Programming, simulation and adjustment of the electric vehicle model; 3. Application of co-simulation methodologies to MBS3D and the electric powertrain subsystem; and 4. Code optimization and study of different integrators. Additionally, in order to deeply understand the context of the project, the first chapters include an introduction to basic vehicle dynamics, current classification of hybrid and electric vehicles and an explanation of the involved technologies such as brake energy regeneration, electric and non-electric propulsion systems for EVs and HEVs (hybrid electric vehicles) and their control strategies. Later, the problem of dynamic modeling of hybrid and electric vehicles is discussed. The integrated development environment and the simulation tool are also briefly described. The core chapters include an explanation of the major co-simulation methodologies and how they have been programmed and applied to the electric powertrain model together with the multibody system dynamic model. Finally, the last chapters summarize the main results and conclusions of the project and propose further research topics. In conclusion, co-simulation methodologies are applicable within the integrated development environments MATLAB and Visual Studio, and the simulation tool MBS3D 2.0, where equation-based models of multidisciplinary subsystems, consisting of mechanical and electrical components, are coupled and integrated in a very efficient way.
Resumo:
Hoy en día, existen numerosos sistemas (financieros, fabricación industrial, infraestructura de servicios básicos, etc.) que son dependientes del software. Según la definición de Ingeniería del Software realizada por I. Sommerville, “la Ingeniería del Software es una disciplina de la ingeniería que comprende todos los aspectos de la producción de software desde las etapas iniciales de la especificación del sistema, hasta el mantenimiento de éste después de que se utiliza.” “La ingeniería del software no sólo comprende los procesos técnicos del desarrollo de software, sino también actividades tales como la gestión de proyectos de software y el desarrollo de herramientas, métodos y teorías de apoyo a la producción de software.” Los modelos de proceso de desarrollo software determinan una serie de pautas para poder desarrollar con éxito un proyecto de desarrollo software. Desde que surgieran estos modelos de proceso, se investigado en nuevas maneras de poder gestionar un proyecto y producir software de calidad. En primer lugar surgieron las metodologías pesadas o tradicionales, pero con el avance del tiempo y la tecnología, surgieron unas nuevas llamadas metodologías ágiles. En el marco de las metodologías ágiles cabe destacar una determinada práctica, la integración continua. Esta práctica surgió de la mano de Martin Fowler, con el objetivo de facilitar el trabajo en grupo y automatizar las tareas de integración. La integración continua se basa en la construcción automática de proyectos con una frecuencia alta, promoviendo la detección de errores en un momento temprano para poder dar prioridad a corregir dichos errores. Sin embargo, una de las claves del éxito en el desarrollo de cualquier proyecto software consiste en utilizar un entorno de trabajo que facilite, sistematice y ayude a aplicar un proceso de desarrollo de una forma eficiente. Este Proyecto Fin de Grado (PFG) tiene por objetivo el análisis de distintas herramientas para configurar un entorno de trabajo que permita desarrollar proyectos aplicando metodologías ágiles e integración continua de una forma fácil y eficiente. Una vez analizadas dichas herramientas, se ha propuesto y configurado un entorno de trabajo para su puesta en marcha y uso. Una característica a destacar de este PFG es que las herramientas analizadas comparten una cualidad común y de alto valor, son herramientas open-source. El entorno de trabajo propuesto en este PFG presenta una arquitectura cliente-servidor, dado que la mayoría de proyectos software se desarrollan en equipo, de tal forma que el servidor proporciona a los distintos clientes/desarrolladores acceso al conjunto de herramientas que constituyen el entorno de trabajo. La parte servidora del entorno propuesto proporciona soporte a la integración continua mediante herramientas de control de versiones, de gestión de historias de usuario, de análisis de métricas de software, y de automatización de la construcción de software. La configuración del cliente únicamente requiere de un entorno de desarrollo integrado (IDE) que soporte el lenguaje de programación Java y conexión con el servidor. ABSTRACT Nowadays, numerous systems (financial, industrial production, basic services infrastructure, etc.) depend on software. According to the Software Engineering definition made by I.Sommerville, “Software engineering is an engineering discipline that is concerned with all aspects of software production from the early stages of system specification through to maintaining the system after it has gone into use.” “Software engineering is not just concerned with the technical processes of software development. It also includes activities such as software project management and the development of tools, methods, and theories to support software production.” Software development process models determine a set of guidelines to successfully develop a software development project. Since these process models emerged, new ways of managing a project and producing software with quality have been investigated. First, the so-called heavy or traditional methodologies appeared, but with the time and the technological improvements, new methodologies emerged: the so-called agile methodologies. Agile methodologies promote, among other practices, continuous integration. This practice was coined by Martin Fowler and aims to make teamwork easier as well as automate integration tasks. Nevertheless, one of the keys to success in software projects is to use a framework that facilitates, systematize, and help to deploy a development process in an efficient way. This Final Degree Project (FDP) aims to analyze different tools to configure a framework that enables to develop projects by applying agile methodologies and continuous integration in an easy and efficient way. Once tools are analyzed, a framework has been proposed and configured. One of the main features of this FDP is that the tools under analysis share a common and high-valued characteristic: they are open-source. The proposed framework presents a client-server architecture, as most of the projects are developed by a team. In this way, the server provides access the clients/developers to the tools that comprise the framework. The server provides continuous integration through a set of tools for control management, user stories management, software quality management, and software construction automatization. The client configuration only requires a Java integrated development environment and network connection to the server.
Resumo:
El sector del transporte es un gran consumidor de energía con un 30 % de la energía utilizada en el mundo. Esa demanda energética está dirigida prioritariamente a los derivados del petróleo, un recurso que se agota, concentrado en países políticamente inestables y causante del calentamiento global por efecto invernadero. Dada esta situación y al aumento de la demanda y precio es necesaria la búsqueda de alternativas para su uso como combustible. Una de las alternativas más viables es el biodiesel, ya que posee características similares al diesel y puede ser usado como sustituto sin tener que realizar grandes modificaciones en el motor. El proyecto tiene como objetivo el estudio de los ésteres etílicos de ácidos grasos (FAEEs) obtenidos a partir de aceites tunecinos para establecer una correlación entre su composición y sus propiedades. Las propiedades estudiadas han sido la viscosidad cinemática, densidad, número de cetano, estabilidad a la oxidación, punto de niebla, punto de fluidez y punto de obstrucción de filtros en frío con los aceites de las siguientes plantas: Ecballium elaterium, Sylibum marianum, Ammi visnaga, Datura stramonium, Citrullus colocynthis Shard, y un aceite de Sardinops sagax tunecino (Aceite de sardina). El motivo por el cual se han seleccionado estos aceites es por su escasa investigación para su uso como combustible, siendo de gran interés estimar su rentabilidad para una posible explotación.
Resumo:
Los materiales lignocelulósicos son potenciales precursores de recursos bioenergéticos, por lo que sería interesante desarrollar tecnologías capaces de capturar su energía y utilizarla en el sector del transporte como combustibles. El azúcar contenido en los materiales lignocelulósicos puede ser liberado por medio de la hidrólisis y usado después por microorganismos. El objetivo del proyecto es encontrar un método de separación de la celulosa y la biomasa de chopo en monómeros de glucosa por medio de la hidrólisis. Para ello se han estudiado tres métodos de hidrólisis: la mecano-catálisis, utilizando diferentes tipos de molinos y caolinita como catalizador, la hidrólisis con líquidos iónicos, estudiando la viabilidad de los reactivos [C4mim+][I-] y [C4mim+][PF6-], y la hidrólisis ácida, usando HCl en concentraciones y temperaturas distintas para optimizar el proceso. En todos los casos se ha llevado a cabo un pretratamiento y se ha aplicado el método de TLC como verificación del proceso. Los tres métodos se han comparado y se ha desarrollado un método de correlación entre la mancha de TLC y la concentración del producto.
Resumo:
Con la llegada de la era de la información, viendo esta era como la necesidad de informatizar, registrar y tratar una gran cantidad de datos mediante la tecnología, se está dando el paso de diversos procesos burocráticos a medios tecnológicos cambiando el papel por los datos almacenados en las computadoras. El DNI electrónico permite a un individuo identificarse mediante un dispositivo donde se almacenan los datos de éste para poder identificarse unívocamente ante aquellos trámites que antaño costaban largos procesos burocráticos en papel. Sabemos que las aplicaciones software son aquellos módulos formado por un conjunto de programas y rutinas que permiten a los diferentes tipos de computadores realizar tareas de manera parcial o totalmente automáticas. Por ello este proyecto demuestra todo el proceso de creación de un módulo software, que cómo comentamos en el primer párrafo, permitiría sobrellevar otros tantos procesos burocráticos como sería la petición del DNI y posterior escritura a mano en distintas situaciones. Todo ello orientado desde un estricto análisis desde el punto de vista de la ingeniería del software. ABSTRACT Due to the fact that we’re in the era of information technology, and from the perspective that this era means to computerize register and treat a big quantity of data through technologic means, we are stepping into a process where all the bureaucracy is being transferred from paper to digital storage models. Hence, the electronic DNI allows the citizen to identify himself univocally against processes that back in time where made through tedious and heavy-paper-work processes. We know that software apps are modules conformed by a set of instructions and programs that make possible the execution of partially or totally automated tasks. That’s why this project shows the process of the creation of a software module (app) that, as we stated before, would allow overcoming many other bureaucratic processes like the request to write down the national identification number. All of it focused to a strict analysis from software engineering’s point of view.
Resumo:
El presente proyecto fin de carrera surge y se engloba dentro del marco del Proyecto de Innovación Educativa IE-14-15-05008 y abarca el proceso de diseño, implantación y seguimiento de la nueva asignatura “Ingenia: Proyecto de Máquinas” perteneciente al recién estrenado Máster en Ingeniería Industrial que oferta la Universidad Politécnica de Madrid. Esto debe realizarse dentro del ámbito de organización educativa que constituye el Marco Europeo de Educación Superior y que con el Proceso de Bolonia (1999) propuso un cambio en el modelo educativo, que permitiese entre otras cosas, impulsar cambios en las metodologías docentes. Durante gran parte del siglo XX, la enseñanza de la ingeniería en las universidades ofrecía una exposición efectiva a la práctica. Era enseñada por ingenieros que estaban ejerciendo su profesión y se concentraba en la resolución de problemas tangibles mientras que los estudiantes aprendían a conceptualizar y diseñar productos y sistemas. La rápida expansión del conocimiento científico y técnico que ocurrió a finales de los 90s causó que la enseñanza de la ingeniería se convirtiera en la enseñanza de la “ciencia de la ingeniería”, con una menor concentración práctica. Los líderes de la industria empezaron a hallar que los estudiantes que se graduaban, si bien tenían una sólida capacitación técnica, carecían de muchas de las habilidades requeridas en las situaciones de ingeniería del mundo real. La enseñanza en general y la enseñanza de la Ingeniería en particular necesitan por tanto de una reforma educativa integral. De esta necesidad, surge la iniciativa CDIO (ConcebirDiseñar-Implementar-Operar), un marco educativo innovador dirigido a producir la próxima generación de líderes de ingeniería; siendo este el marco al que se abrazan las asignaturas tipo “INGENIA” y con el que se pretenden alcanzar las habilidades tanto técnicas como personales e interpersonales que requiere la nueva generación de ingenieros para ser competitivos en un sector cada vez más amplio y multidisciplinar. Para conseguir el cambio requerido antes citado, se hace necesaria la realización de proyectos de innovación educativa como el presente, que ayuden durante el proceso de transición que está viviendo el modelo educativo. Para lograr estos, el presente proyecto pretende dar respuesta a preguntas como: ¿De dónde venimos y hacia dónde debemos ir?, ¿Por qué es necesario un cambio?, ¿Qué pretendemos alcanzar con este cambio?, ¿Qué resultados esperamos de ello?, ¿Qué cambios se han introducido y cuales hay pendientes por introducir?, ¿Cómo planificar la reestructuración y adaptación de recursos y contenidos docentes para alcanzar los objetivos?, ¿De qué recursos se dispone y cuales hay que incorporar?, ¿Cómo debemos medir, evaluar y difundir los resultados obtenidos?, ¿Qué conclusiones se pueden extraer de los resultados? Para dar respuesta a estas y otras preguntas se abordan los puntos que se exponen a continuación. Los principales apartados del presente proyecto son la INTRODUCCIÓN, PLANIFICACIÓN y RESULTADOS OBTENIDOS. En primer lugar, durante la INTRODUCCIÓN se realiza una descripción del Espacio Europeo de Educación Superior (EEES), resumiendo cuáles son los objetivos estratégicos del mismo, y la conexión existente con la enseñanza de la Ingeniería Mecánica. Posteriormente se aborda un breve estudio de las metodologías docentes tradicionales empleadas en la enseñanza para inmediatamente después introducir las bases del aprendizaje activo. Se analizan las necesidades que han llevado a plantear los cambios en las metodologías docentes. Para esto se analizan varios estudios enfocados a concretar las características que se requieren en los recién egresados de titulaciones técnicas. Como consecuencia de las necesidades descritas surge la iniciativa CDIO, marco a la que se acogen las asignaturas “Ingenia” y que se estudiará en profundidad. Por último y tras introducir el contexto del proyecto, se describen los objetivos del mismo así como la planificación de las actividades. Con el apartado PLANIFICACIÓN se pretende describir las actividades realizadas del proceso de diseño de la asignatura abarcando la programación de actividades, gestión y empleo de recursos, metodologías docentes empleadas, plan de evaluación, entre otras actividades. En el apartado RESULTADOS OBTENIDOS se describen los prototipos fabricados, los resultados de aprendizaje, la valoración de la asignatura y problemas encontrados. Todo ello será de especial interés para extraer lecciones aprendidas y proponer acciones correctoras y/o de mejora.
Resumo:
Tipo de Buque Portacontenedores Capacidad 8250 TEU’s (800 refrigerados) Peso Muerto 105000 t Velocidad 24 nudos al 85% en Pruebas Autonomía 13000 millas al 85% MCR y 15% Margen de Mar Tripulación 19 personas Sociedad de Clasificación Lloyd’s Register Reglamentos SOLAS+MARPOL+exigibles a este tipo de buque Exigencias Cámara desatendida-Un solo hambre en el puente
Resumo:
La Macaronesia es un conjunto de archipiélagos de origen volcánico situados en el atlántico norte, entre los 15º N en Cabo Verde y los 40º N en Azores. Se trata de islas nacidas desde el fondo oceánico y emergidas en un intervalo de tiempo relativamente similar (los últimos 25 millones de años), influidas por los vientos alisios, la rama oriental de la corriente del Golfo y la corriente fría de Canarias. Son territorios muy singulares, medioambientalmente hablando, con frágiles ecosistemas. La presente obra se compone de 15 capítulos y 6 casos de aplicación divididos en 4 bloques: fundamentos teóricos de la restauración, restauración de la cubierta vegetal, restauración de espacios degradados y casos prácticos de aplicación. Con este libro se pretende hacer una introducción a las técnicas de restauración ambiental y recuperación de la cubierta vegetal. Se contemplan técnicas de conservación y restauración de suelos, reforestación, restauración hidrológica forestal, la recuperación del litoral costero y el dominio público, la restauración tras incendios forestales, incluyendo la evaluación ambiental de planes y proyectos. En la mayoría de los casos se particulariza para las Islas Canarias, contemplando las particularidades de cada isla y siendo extensible a los demás archipiélagos macaronésicos. El libro es de interés para académicos, ingenieros, consultores, y profesionales vinculados con la ingeniería del medio natural y la restauración de espacios degradados especialmente en la región de la Macaronesia. Los coordinadores y autores de algunos de los capítulos de la presente obra, Juan Carlos Santamarta Cerezal y Jorge Naranjo Borges son Doctores Ingenieros de Montes, representantes del colegio profesional en Canarias desde el año 2010. Con una dilatada experiencia en la gestión e ingeniería forestal y ambiental en las islas. Entre ambos han firmado cerca de 160 publicaciones relacionadas con el medioambiente y la sostenibilidad, participando también activamente en la docencia y coordinación de más de 90 cursos de especialización.
Resumo:
Este proyecto se plantea, desde su misma base, como uno de desarrollo e Ingeniería del Software por una parte; con cierto componente de algorítmica. Debido a que intervienen varias partes (cliente, alumno y tutor) y a que no se tenía una visión completa del resultado final del programa al que se quería llegar, se ha optado por una metodología ágil adaptativa para responder a los cambios y a la suma de nuevos requisitos; como se irá explicando en esta memoria. Con el presente documento se trata de tener un referente general de las fases, factores e inconvenientes que han intervenido en la realización del proyecto. Aunque podría haberse reflejado como una memoria de desarrollo de software, se ha optado por un punto de vista con mayor distanciamiento, una aproximación más general. Con este texto, la intención inicial es formular de forma clara lo que se necesita y a que requisitos tiene que adecuarse el software desde un punto de vista del usuario, para acto seguido, pormenorizar el diseño y el desarrollo en diferentes puntos sucesivos que recojan la historia y cambios en el proyecto de forma organizada. Es, por tanto, una referencia de ingeniería de un desarrollo software, que abarca desde la concepción del proyecto, pasando por los fundamentos teóricos, diseño, implementación hasta las pruebas finales de validación. E incluso más allá, ya que, como se explica en capítulos posteriores, en cierto punto se tuvo la necesidad de reescribir gran parte del código.
Resumo:
Este proyecto presenta un sistema informático para ayudar a personas Asperger, que tienen problemas para recordar actividades y objetos básicos, y a sus profesores especialistas. Se ha decidido llamarlo AS (Asperger). Se compone de dos aplicaciones Android: la aplicación tutor y la aplicación usuario. La primera es para que los profesionales, desde su propia tablet, puedan centralizar y gestionar toda la información de sus alumnos creando tareas, retos y eventos específicos para cada uno. La segunda es para los móviles de las personas Asperger, se encarga de recordarles los sucesos que su tutor les ha asignado y después les pregunta si los realizaron correctamente. Ambas interfaces siguen los principios de claridad y sencillez, además la aplicación usuario es totalmente personalizable para que una persona Asperger de cualquier edad pueda interactuar y motivarse con ella. La información es almacenada localmente en cada dispositivo. Ambas aplicaciones se comunican para sincronizar los datos mediante sockets usando la tecnología WIFI. Esto permite tener un seguimiento del progreso de cada alumno desde la aplicación tutor. La implementación se ha realizado mediante una arquitectura multicapa que utiliza patrones de ingeniería del software para facilitar cualquier extensión o adaptación de la funcionalidad del sistema.
Resumo:
L'arxiu conté catorze presentacions tipo Power Point, corresponents als temes impartits durant el curs 2010/11 en la assignatura de Geologia Aplicada a l'Enginyeria Civil.
Resumo:
Data mining is one of the most important analysis techniques to automatically extract knowledge from large amount of data. Nowadays, data mining is based on low-level specifications of the employed techniques typically bounded to a specific analysis platform. Therefore, data mining lacks a modelling architecture that allows analysts to consider it as a truly software-engineering process. Bearing in mind this situation, we propose a model-driven approach which is based on (i) a conceptual modelling framework for data mining, and (ii) a set of model transformations to automatically generate both the data under analysis (that is deployed via data-warehousing technology) and the analysis models for data mining (tailored to a specific platform). Thus, analysts can concentrate on understanding the analysis problem via conceptual data-mining models instead of wasting efforts on low-level programming tasks related to the underlying-platform technical details. These time consuming tasks are now entrusted to the model-transformations scaffolding. The feasibility of our approach is shown by means of a hypothetical data-mining scenario where a time series analysis is required.
Resumo:
Subsidence is a natural hazard that affects wide areas in the world causing important economic costs annually. This phenomenon has occurred in the metropolitan area of Murcia City (SE Spain) as a result of groundwater overexploitation. In this work aquifer system subsidence is investigated using an advanced differential SAR interferometry remote sensing technique (A-DInSAR) called Stable Point Network (SPN). The SPN derived displacement results, mainly the velocity displacement maps and the time series of the displacement, reveal that in the period 2004–2008 the rate of subsidence in Murcia metropolitan area doubled with respect to the previous period from 1995 to 2005. The acceleration of the deformation phenomenon is explained by the drought period started in 2006. The comparison of the temporal evolution of the displacements measured with the extensometers and the SPN technique shows an average absolute error of 3.9±3.8 mm. Finally, results from a finite element model developed to simulate the recorded time history subsidence from known water table height changes compares well with the SPN displacement time series estimations. This result demonstrates the potential of A-DInSAR techniques to validate subsidence prediction models as an alternative to using instrumental ground based techniques for validation.