953 resultados para Human reproduction
Resumo:
Stimulation of the androgen receptor via bioavailable androgens, including testosterone and testosterone metabolites, is a key driver of prostate development and the early stages of prostate cancer. Androgens are hydrophobic and as such require carrier proteins, including sex hormone-binding globulin (SHBG), to enable efficient distribution from sites of biosynthesis to target tissues. The similarly hydrophobic corticosteroids also require a carrier protein whose affinity for steroid is modulated by proteolysis. However, proteolytic mechanisms regulating the SHBG/androgen complex have not been reported. Here, we show that the cancer-associated serine proteases, kallikrein-related peptidase (KLK)4 and KLK14, bind strongly to SHBG in glutathione S-transferase interaction analyses. Further, we demonstrate that active KLK4 and KLK14 cleave human SHBG at unique sites and in an androgen-dependent manner. KLK4 separated androgen-free SHBG into its two laminin G-like (LG) domains that were subsequently proteolytically stable even after prolonged digestion, whereas a catalytically equivalent amount of KLK14 reduced SHBG to small peptide fragments over the same period. Conversely, proteolysis of 5α-dihydrotestosterone (DHT)-bound SHBG was similar for both KLKs and left the steroid binding LG4 domain intact. Characterization of this proteolysis fragment by [(3)H]-labeled DHT binding assays revealed that it retained identical affinity for androgen compared with full-length SHBG (dissociation constant = 1.92 nM). Consistent with this, both full-length SHBG and SHBG-LG4 significantly increased DHT-mediated transcriptional activity of the androgen receptor compared with DHT delivered without carrier protein. Collectively, these data provide the first evidence that SHBG is a target for proteolysis and demonstrate that a stable fragment derived from proteolysis of steroid-bound SHBG retains binding function in vitro.
Resumo:
The Kallikrein (KLK) gene locus encodes a family of serine proteases and is the largest contiguous cluster of protease-encoding genes attributed an evolutionary age of 330 million years. The KLK locus has been implicated as a high susceptibility risk loci in numerous cancer studies through the last decade. The KLK3 gene already has established clinical relevance as a biomarker in prostate cancer prognosis through its encoded protein, prostate-specific antigen. Data mined through genome-wide association studies (GWAS) and next-generation sequencing point to many important candidate single nucleotide polymorphisms (SNPs) in KLK3 and other KLK genes. SNPs in the KLK locus have been found to be associated with several diseases including cancer, hypertension, cardiovascular disease and atopic dermatitis. Moreover, introducing a model incorporating SNPs to improve the efficiency of prostate-specific antigen in detecting malignant states of prostate cancer has been recently suggested. Establishing the functional relevance of these newly-discovered SNPs, and their interactions with each other, through in silico investigations followed by experimental validation, can accelerate the discovery of diagnostic and prognostic biomarkers. In this review, we discuss the various genetic association studies on the KLK loci identified either through candidate gene association studies or at the GWAS and post-GWAS front to aid researchers in streamlining their search for the most significant, relevant and therapeutically promising candidate KLK gene and/or SNP for future investigations.
Resumo:
Associations between single nucleotide polymorphisms (SNPs) at 5p15 and multiple cancer types have been reported. We have previously shown evidence for a strong association between prostate cancer (PrCa) risk and rs2242652 at 5p15, intronic in the telomerase reverse transcriptase (TERT) gene that encodes TERT. To comprehensively evaluate the association between genetic variation across this region and PrCa, we performed a fine-mapping analysis by genotyping 134 SNPs using a custom Illumina iSelect array or Sequenom MassArray iPlex, followed by imputation of 1094 SNPs in 22 301 PrCa cases and 22 320 controls in The PRACTICAL consortium. Multiple stepwise logistic regression analysis identified four signals in the promoter or intronic regions of TERT that independently associated with PrCa risk. Gene expression analysis of normal prostate tissue showed evidence that SNPs within one of these regions also associated with TERT expression, providing a potential mechanism for predisposition to disease.
Resumo:
Separately, actinic keratosis (AK) and cutaneous squamous cell carcinoma (SCC) have been associated with cutaneous human papillomavirus (HPV) infections. To further explore the association between HPV infection and SCC development, we determined markers of cutaneous HPV infection within a single population in persons with precursor lesions (AK), cancerous lesions (SCC), and without. Serum and plucked eyebrow hairs were collected from 57 tumor-free controls, 126 AK, and 64 SCC cases. Presence of HPV L1 and E6 seroreactivity and viral DNA were determined for HPV types 5, 8, 15, 16, 20, 24, and 38. Significant positive associations with increasing severity of the lesions (controls, AK, and SCC, respectively) were observed for overall HPV L1 seropositivity (13%, 26%, and 37%) and for HPV8 (4%, 17%, and 30%). In parallel, the proportion of L1 seropositive individuals against multiple HPV types increased from 14% to 39% and 45%. The overall E6 seroreactivity, however, tended to decline with AK and SCC, especially for HPV8 (21%, 11%, and 2%). HPV DNA positivity was most prevalent in the AK cases (54%) compared with the SCC cases (44%) and the tumor-free controls (40%). Among all participants, there was a positive trend between overall HPV DNA positivity and L1 seropositivity, but not E6 seropositivity. Taken together, our data suggest that cutaneous HPV infections accompanied by detectable HPV DNA in eyebrow hairs and HPV L1 seropositivity, but not E6 seropositivity, are associated with an increased risk of AK and SCC.
Resumo:
Human papillomaviruses (HPVs) cause cervical cancer and some other types of epithelial cancers. HPV types from the phylogenic beta genus (beta-PVs), formerly known as epidermodysplasia verruciformis–associated HPV types, are frequently detected in nonmelanoma skin cancers, especially in squamous cell carcinomas (SCCs). An etiologic relationship with beta-PV infection is suspected...
Resumo:
Eph receptor tyrosine kinases and their ligands, the ephrins, regulate the development and maintenance of multiple organs but little is known about their potential role within the cornea. The purpose of this study was to perform a thorough investigation of Eph/ephrin expression within the human cornea including the limbal stem cell niche. Initially, immunohistochemistry was performed on human donor eyes to determine the spatial distribution of Eph receptors and ephrins in the cornea and limbus. Patterns of Eph/ephrin gene expression in (1) immortalised human corneal endothelial (B4G12) or corneal epithelial (HCE-T) cell lines, and (2) primary cultures of epithelial or stromal cells established from the corneal limbus of cadaveric eye tissue were then assessed by reverse transcription (RT) PCR. Limbal epithelial or stromal cells from primary cultures were also assessed for evidence of Eph/ephrin-reactivity by immunofluorescence. Immunoreactivity for ephrinA1 and EphB4 was detected in the corneal endothelium of donor eyes. EphB4 was also consistently detected in the limbal and corneal epithelium and in cells located in the stroma of the peripheral cornea. Expression of multiple Eph/ephrin genes was detected in immortalised corneal epithelial and endothelial cell lines. Evidence of Eph/ephrin gene expression was also demonstrated in primary cultures of human limbal stromal (EphB4, B6; ephrinA5) and epithelial cells (EphA1, A2; ephrinA5, B2) using both RT-PCR and immunofluorescence. The expression of Eph receptors and ephrins within the human cornea and limbus is much wider than previously appreciated and suggests multiple potential roles for these molecules in the maintenance of normal corneal architecture.
Resumo:
Adolescent idiopathic scoliosis is a complex three dimensional deformity affecting 2-3% of the general population. The resulting spinal deformity consists of coronal curvature, hypokyphosis of the thoracic spine and vertebral rotation in the axial plane with posterior elements turned into the curve concavity. The potential for curve progression is heightened during the adolescent growth spurt. Success of scoliosis deformity correction depends on solid bony fusion between adjacent vertebrae after the intervertebral (IV) discs have been surgically cleared and the disc spaces filled with graft material. Recently a bioactive and resorbable scaffold fabricated from medical grade polycaprolactone has been developed for bone regeneration at load bearing sites. Combined with rhBMP-2, this has been shown to be successful in acting as a bone graft substitute in a porcine lumbar interbody fusion model when compared to autologous bone graft alone. The study aimed to establish a large animal thoracic spine interbody fusion model, develop spine biodegradable scaffolds (PCL) in combination with biologics (rhBMP-2) and to establish a platform for research into spine tissue engineering constructs. Preliminary results demonstrate higher grades of radiologically evident bony fusion across all levels when comparing fusion scores between the 3 and 6 month postop groups at the PCL CaP coated scaffold level, which is observed to be a similar grade to autograft, while no fusion is seen at the scaffold only level. Results to date suggest that the combination of rhBMP-2 and scaffold engineering actively promotes bone formation, laying the basis of a viable tissue engineered constructs.
Resumo:
Many commentators have treated the internet as a site of democratic freedom and as a new kind of public sphere. While there are good reasons for optimism, like any social space digital space also has its dark side. Citizens and governments alike have expressed anxiety about cybercrime and cyber-security. In August 2011, the Australian government introduced legislation to give effect to Australia becoming a signatory to the European Convention on Cybercrime (2001). At the time of writing, that legislation is still before the Parliament. In this article, attention is given to how the legal and policy-making process enabling Australia to be compliant with the European Convention on Cybercrime came about. Among the motivations that informed both the development of the Convention in Europe and then the Australian exercise of legislating for compliance with it was a range of legitimate concerns about the impact that cybercrime can have on individuals and communities. This article makes the case that equal attention also needs to be given to ensuring that legislators and policy makers differentiate between legitimate security imperatives and any over-reach evident in the implementation of this legislation that affects rule of law principles, our capacity to engage in democratic practices, and our civic and human rights.
Resumo:
This discussion has outlined a theoretical and pragmatic framework to demonstrate that future research involving the analysis of human performance in surgical should encourage the use of phenomenology to enhance the knowledge base of this area of study. Merging experiential (first-person) and experimental (third-person) methods may possibly help improve research designs and analyses in the investigation of robotics in surgical performance. By relying solely on third-person techniques, the current methodology and interpretation used to analyze human performance in surgical robotics is limited. Recent advances in cognitive science and psychology have also recognized this limitation and have now begun to shift to neurophenomenology. Finally, discussion on recent robotics research presented here demonstrates the potential phenomenology holds for augmenting the methodological and analysis techniques currently used by researchers of human performance in surgical robotics.
Resumo:
Several major human pathogens, including the filoviruses, paramyxoviruses, and rhabdoviruses, package their single-stranded RNA genomes within helical nucleocapsids, which bud through the plasma membrane of the infected cell to release enveloped virions. The virions are often heterogeneous in shape, which makes it difficult to study their structure and assembly mechanisms. We have applied cryo-electron tomography and sub-tomogram averaging methods to derive structures of Marburg virus, a highly pathogenic filovirus, both after release and during assembly within infected cells. The data demonstrate the potential of cryo-electron tomography methods to derive detailed structural information for intermediate steps in biological pathways within intact cells. We describe the location and arrangement of the viral proteins within the virion. We show that the N-terminal domain of the nucleoprotein contains the minimal assembly determinants for a helical nucleocapsid with variable number of proteins per turn. Lobes protruding from alternate interfaces between each nucleoprotein are formed by the C-terminal domain of the nucleoprotein, together with viral proteins VP24 and VP35. Each nucleoprotein packages six RNA bases. The nucleocapsid interacts in an unusual, flexible "Velcro-like" manner with the viral matrix protein VP40. Determination of the structures of assembly intermediates showed that the nucleocapsid has a defined orientation during transport and budding. Together the data show striking architectural homology between the nucleocapsid helix of rhabdoviruses and filoviruses, but unexpected, fundamental differences in the mechanisms by which the nucleocapsids are then assembled together with matrix proteins and initiate membrane envelopment to release infectious virions, suggesting that the viruses have evolved different solutions to these conserved assembly steps.
Resumo:
The human kallikrein-related peptidases are a subgroup of trypsin and chymotrypsin-like serine peptidases that are characterized by their homology to tissue kallikrein or kallikrein 1 (KLK1) encoded by the KLK1 gene (reviewed in[1-4]). The human KLK locus spans an approximately 320 kb region on chromosome 19q13.3-13.4 and contains fifteen genes encoding KLK1 and fourteen other kallikrein-related peptidases, KLK2-KLK15, which have been named contiguously in the locus in the order of their discovery [5-8] (Figure 606.1). It is the largest contiguous cluster of serine protease encoding genes in the human genome which has evolved from gene duplication of KLK1 and then subsequent reduplication of the newly evolved KLK genes [2]. The high conservation noted for KLK1-KLK3 (62-77%) reflects the proposed duplication of the KLK1 gene that produced the KLK2 gene which further generated the KLK3 gene. In contrast, the newer KLK4-KLK15 proteases share much less similarity, from 24-66%, although strong homology between KLK4 and KLK5, KLK9 and KLK11, and KLK10 and KLK12 suggests these genes are duplications of each other [2]...
Resumo:
Understanding complex systems within the human body presents a unique challenge for medical engineers and health practitioners. One significant issue is the ability to communicate their research findings to audiences with limited medical knowledge or understanding of the behaviour and composition of such structures. Much of what is known about the human body is currently communicated through abstract representations which include raw data sets, hand drawn illustrations or cellular automata. The development of 3D Computer Graphics Animation has provided a new medium for communicating these abstract concepts to audiences in new ways. This paper presents an approach for the visualisation of human articular cartilage deterioration using 3D Computer Graphics Animation. The animated outcome of this research introduces the complex interior structure of human cartilage to audiences with limited medical engineering knowledge.
Resumo:
Service robots that operate in human environments will accomplish tasks most efficiently and least disruptively if they have the capability to mimic and understand the motion patterns of the people in their workspace. This work demonstrates how a robot can create a humancentric navigational map online, and that this map re ects changes in the environment that trigger altered motion patterns of people. An RGBD sensor mounted on the robot is used to detect and track people moving through the environment. The trajectories are clustered online and organised into a tree-like probabilistic data structure which can be used to detect anomalous trajectories. A costmap is reverse engineered from the clustered trajectories that can then inform the robot's onboard planning process. Results show that the resultant paths taken by the robot mimic expected human behaviour and can allow the robot to respond to altered human motion behaviours in the environment.
Resumo:
This paper will focus on the legal issues associated with people displaced as a result of water scarcity. Human displacement can lead to internal displacement (displacement of people within their country) and external displacement (displacement of people into another country). If the displacement takes place as a result of climate change these people may be referred to as climate refugees. The majority of work on climate refugees has focused on those people that will lose their homes as a result of sea –level rise. The number of people that could be displaced as a result of prolonged drought and lack of adequate water supplies is likely to be far more significant in number. There are estimates that around 2.8 billion people will suffer water shortages by 2025 and many of these people are at increased risk of internal or external displacement. Certain groups are more likely to be displaced as a result of prolonged drought or water scarcity. These groups include indigenous and minorities groups living in areas that are more susceptible to climate change and groups living in areas with a history of water shortage and supply issues. People displaced as a result of water scarcity are at increased risks of malnutrition and of dehydration. Furthermore the lack of adequate water supplies in such areas increases the risk and spread of disease among the population. In certain instances internal and external displacement may lead to escalation of conflict and competition for water resources in newly settled territories. This paper will use case studies from Australia (indigenous groups and rural landholders) and East Africa (Ethiopia, Sudan and Kenya) to demonstrate the significance of human displacement arising as a result of water scarcity. Climate adaptation policy frameworks will need to address a number of legal issues, arising as a result of climate displacement from water scarcity. There are a number of unresolved legal issues for both categories of environmental displaced people. The major legal issue for externally environmentally displaced people is lack of international recognition and support for these people. The Climate Change Convention, the Refugee Convention, the Desertification Convention and Human Rights instruments all fail to provide recognition for people externally displaced as a result of environmental conditions. Similarly there is a lack of legal recognition and legal support mechanisms to assist those people internally displaced by environmental conditions. The lack of developed environmental rights in most countries contributes to this problem. Polices and governance frameworks must be put in place which aims to prevent such displacement through programs identifying populations at risk and instigating damage mitigation and relocation programs. In addition there are a number of legal issues which may arise such as; rights of compensation, property and tenure disputes, increases on the water demand and environmental degradation in places of relocation and jurisdictional issues arising in federal countries. This paper will provide an overview of the legal issues at the international and national levels arising as a result of climate displacement from water scarcity.
Resumo:
Bovine colostrum has been shown to influence the cytokine production of bovine leukocytes. However, it remains unknown whether processed bovine colostrum, a supplement popular among athletes to enhance immune function, is able to modulate cytokine secretion of human lymphocytes and monocytes. The aim of this investigation was to determine the influence of a commercially available bovine colostrum protein concentrate (CPC) to stimulate cytokine production by human peripheral blood mononuclear cells (PBMCs). Blood was sampled from four healthy male endurance athletes who had abstained from exercise for 48 h. PBMCs were separated and cultured with bovine CPC concentrations of 0 (control), 1.25, 2.5, and 5% with and without lipopolysaccharide (LPS) (3 microg/mL) and phytohemagglutinin (PHA) (2.5 microg/mL). Cell supernatants were collected at 6 and 24 h of culture for the determination of tumor necrosis factor (TNF), interferon (IFN)-gamma, interleukin (IL)-10, IL-6, IL-4, and IL-2 concentrations. Bovine CPC significantly stimulated the release of IFN-gamma, IL-10, and IL-2 (p < 0.03). The addition of LPS to PBMCs cocultured with bovine CPC significantly stimulated the release of IL-2 and inhibited the early release of TNF, IL-6, and IL-4 (p < 0.02). Phytohemagglutinin stimulation in combination with bovine CPC significantly increased the secretion of IL-10 and IL-2 at 6 h of culture and inhibited IFN-gamma and TNF (p < 0.05). This data show that a commercial bovine CPC is able to modulate in vitro cytokine production of human PBMCs. Alterations in cytokine secretion may be a potential mechanism for reported benefits associated with supplementation.