958 resultados para Human experimental anxiety


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The coronary collateral circulation is an alternative source of blood supply to a myocardial area jeopardized by the failure of the stenotic or occluded vessel to provide enough blood flow to this region. Until recently, only qualitative or semiqualitative methods have been available for the assessment of the coronary collateral circulation in humans, such as the patient's history of walk-through angina pectoris, the registration of intracoronary ECG signs for myocardial ischaemia or angina pectoris during coronary occlusion, or coronary angiographic classification (score 0-3) of collaterals. Studies of coronary wedge pressure measurements distal of a balloon-occluded coronary artery and the recent advent of ultrathin pressure and Doppler angioplasty guidewires have made it possible to obtain pressure or flow velocity data in remote vascular areas and, thus, to calculate functional variables for coronary collateral flow. Those coronary occlusive pressure- and flow velocity-derived parameters express collateral flow as a fraction of antegrade coronary flow during vessel patency of the collateral-receiving vessel. They are both interchangeable, and they have been validated in comparison to 'traditional' methods and against each other. The possibility of accurately measuring coronary collateral flow indices in humans undergoing coronary balloon angioplasty opens areas of investigation of the pathogenesis, pathophysiology and therapeutic promotion of the collateral circulation previously reserved for exclusively experimental studies. The purpose of this article is to review several clinically available methods for the functional characterization of the coronary collateral circulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aging societies suffer from an increasing incidence of bone fractures. Bone strength depends on the amount of mineral measured by clinical densitometry, but also on the micromechanical properties of the bone hierarchical organization. A good understanding has been reached for elastic properties on several length scales, but up to now there is a lack of reliable postyield data on the lower length scales. In order to be able to describe the behavior of bone at the microscale, an anisotropic elastic-viscoplastic damage model was developed using an eccentric generalized Hill criterion and nonlinear isotropic hardening. The model was implemented as a user subroutine in Abaqus and verified using single element tests. A FE simulation of microindentation in lamellar bone was finally performed show-ing that the new constitutive model can capture the main characteristics of the indentation response of bone. As the generalized Hill criterion is limited to elliptical and cylindrical yield surfaces and the correct shape for bone is not known, a new yield surface was developed that takes any convex quadratic shape. The main advantage is that in the case of material identification the shape of the yield surface does not have to be anticipated but a minimization results in the optimal shape among all convex quadrics. The generality of the formulation was demonstrated by showing its degeneration to classical yield surfaces. Also, existing yield criteria for bone at multiple length scales were converted to the quadric formulation. Then, a computational study to determine the influence of yield surface shape and damage on the in-dentation response of bone using spherical and conical tips was performed. The constitutive model was adapted to the quadric criterion and yield surface shape and critical damage were varied. They were shown to have a major impact on the indentation curves. Their influence on indentation modulus, hardness, their ratio as well as the elastic to total work ratio were found to be very well described by multilinear regressions for both tip shapes. For conical tips, indentation depth was not a significant fac-tor, while for spherical tips damage was insignificant. All inverse methods based on microindentation suffer from a lack of uniqueness of the found material properties in the case of nonlinear material behavior. Therefore, monotonic and cyclic micropillar com-pression tests in a scanning electron microscope allowing a straightforward interpretation comple-mented by microindentation and macroscopic uniaxial compression tests were performed on dry ovine bone to identify modulus, yield stress, plastic deformation, damage accumulation and failure mecha-nisms. While the elastic properties were highly consistent, the postyield deformation and failure mech-anisms differed between the two length scales. A majority of the micropillars showed a ductile behavior with strain hardening until failure by localization in a slip plane, while the macroscopic samples failed in a quasi-brittle fashion with microcracks coalescing into macroscopic failure surfaces. In agreement with a proposed rheological model, these experiments illustrate a transition from a ductile mechanical behavior of bone at the microscale to a quasi-brittle response driven by the growth of preexisting cracks along interfaces or in the vicinity of pores at the macroscale. Subsequently, a study was undertaken to quantify the topological variability of indentations in bone and examine its relationship with mechanical properties. Indentations were performed in dry human and ovine bone in axial and transverse directions and their topography measured by AFM. Statistical shape modeling of the residual imprint allowed to define a mean shape and describe the variability with 21 principal components related to imprint depth, surface curvature and roughness. The indentation profile of bone was highly consistent and free of any pile up. A few of the topological parameters, in particular depth, showed significant correlations to variations in mechanical properties, but the cor-relations were not very strong or consistent. We could thus verify that bone is rather homogeneous in its micromechanical properties and that indentation results are not strongly influenced by small de-viations from the ideal case. As the uniaxial properties measured by micropillar compression are in conflict with the current literature on bone indentation, another dissipative mechanism has to be present. The elastic-viscoplastic damage model was therefore extended to viscoelasticity. The viscoelastic properties were identified from macroscopic experiments, while the quasistatic postelastic properties were extracted from micropillar data. It was found that viscoelasticity governed by macroscale properties has very little influence on the indentation curve and results in a clear underestimation of the creep deformation. Adding viscoplasticity leads to increased creep, but hardness is still highly overestimated. It was possible to obtain a reasonable fit with experimental indentation curves for both Berkovich and spherical indenta-tion when abandoning the assumption of shear strength being governed by an isotropy condition. These results remain to be verified by independent tests probing the micromechanical strength prop-erties in tension and shear. In conclusion, in this thesis several tools were developed to describe the complex behavior of bone on the microscale and experiments were performed to identify its material properties. Micropillar com-pression highlighted a size effect in bone due to the presence of preexisting cracks and pores or inter-faces like cement lines. It was possible to get a reasonable fit between experimental indentation curves using different tips and simulations using the constitutive model and uniaxial properties measured by micropillar compression. Additional experimental work is necessary to identify the exact nature of the size effect and the mechanical role of interfaces in bone. Deciphering the micromechanical behavior of lamellar bone and its evolution with age, disease and treatment and its failure mechanisms on several length scales will help preventing fractures in the elderly in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The immunomodulatory FTY720 (fingolimod) is presently approved for the treatment of relapsing-remitting multiple sclerosis. It is a prodrug that acts by modulating sphingosine 1-phosphate (S1P) receptor signaling. In this study, we have developed and characterized two novel oxazolo-oxazole derivatives of FTY720, ST-968 and the oxy analog ST-1071, which require no preceding activating phosphorylation, and proved to be active in intact cells and triggered S1P1 and S1P3, but not S1P2, receptor internalization as a result of receptor activation. Functionally, ST-968 and ST-1071 acted similar to FTY720 to abrogate S1P-triggered chemotaxis of mouse splenocytes, mouse T cells and human U937 cells, and reduced TNFa- and LPS-stimulated endothelial cell permeability. The compounds also reduced TNFα-induced ICAM-1 and VCAM-1 mRNA expression, but restored TNFα-mediated downregulation of PECAM-1 mRNA expression. In an in vivo setting, the application of ST-968 or ST-1071 to mice resulted in a reduction of blood lymphocytes and significantly reduced the clinical symptoms of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice comparable to FTY720 either by prophylactic or therapeutic treatment. In parallel to the reduced clinical symptoms, infiltration of immune cells in the brain was strongly reduced, and in isolated tissues of brain and spinal cord, the mRNA and protein expressions of ICAM-1 and VCAM-1, as well as of matrix metalloproteinase-9 were reduced by all compounds, whereas PECAM-1 and tissue inhibitor of metalloproteinase TIMP-1 were upregulated. In summary, the data suggest that these novel butterfly derivatives of FTY720 could have considerable implication for future therapies of multiple sclerosis and other autoimmune diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polyspecific IgG given intravenously at high doses (IVIG) is used for immunomodulatory therapy in autoimmune diseases such as idiopathic thrombocytopenic purpura and myasthenia gravis. It is assumed that the clinical effect is brought about in part by a modulation of mononuclear phagocyte function, in particular by an inhibition of Fc receptor (FcR) mediated phagocytosis. In the present study, the effect of IVIG on FcR-mediated phagocytosis by monocytes was analysed in vitro. Since monocytes exposed to minute amounts of surface-bound IgG displayed impaired phagocytosis of IgG-coated erythrocytes (EA), the effect of IVIG was studied with mononuclear cells suspended in teflon bags in medium containing 10% autologous serum and IVIG (2-10 mg/ml). Monocytes pre-exposed to IVIG and then washed, displayed impaired ingestion of EA when compared with control cells cultured in 10% autologous serum only. The decrease in phagocytosis was observed with sheep erythrocytes treated with either rabbit IgG or bovine IgG1 and with anti-D-treated human erythrocytes. This suggests that phagocytosis via both FcR type I (FcRI) and type II (FcRII) was decreased. The impairment of phagocytosis was dependent on the presence of intact IgG and was mediated by IVIG from nulliparous donors and from multigravidae to the same extent, suggesting that alloantibodies contained in IVIG have a minor role in modulating FcR-mediated phagocytosis by monocytes. A flow cytometric analysis using anti-FcRI, FcRII and FcRII monoclonal antibodies showed that IVIG treatment upregulated FcRI expression but did not significantly alter the expression of FcRII and FcRIII.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In practical forensic casework, backspatter recovered from shooters' hands can be an indicator of self-inflicted gunshot wounds to the head. In such cases, backspatter retrieved from inside the barrel indicates that the weapon found at the death scene was involved in causing the injury to the head. However, systematic research on the aspects conditioning presence, amount and specific patterns of backspatter is lacking so far. Herein, a new concept of backspatter investigation is presented, comprising staining technique, weapon and target medium: the 'triple contrast method' was developed, tested and is introduced for experimental backspatter analysis. First, mixtures of various proportions of acrylic paint for optical detection, barium sulphate for radiocontrast imaging in computed tomography and fresh human blood for PCR-based DNA profiling were generated (triple mixture) and tested for DNA quantification and short tandem repeat (STR) typing success. All tested mixtures yielded sufficient DNA that produced full STR profiles suitable for forensic identification. Then, for backspatter analysis, sealed foil bags containing the triple mixture were attached to plastic bottles filled with 10 % ballistic gelatine and covered by a 2-3-mm layer of silicone. To simulate backspatter, close contact shots were fired at these models. Endoscopy of the barrel inside revealed coloured backspatter containing typable DNA and radiographic imaging showed a contrasted bullet path in the gelatine. Cross sections of the gelatine core exhibited cracks and fissures stained by the acrylic paint facilitating wound ballistic analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present article, we analyzed the role of self-control strength and state anxiety in sports performance. We tested the hypothesis that self-control strength and state anxiety interact in predicting sports performance on the basis of two studies, each using a different sports task (Study 1: performance in a basketball free throw task, N = 64; Study 2: performance in a dart task, N = 79). The patterns of results were as expected in both studies: Participants with depleted self-control strength performed worse in the specific tasks as their anxiety increased, whereas there was no significant relation for participants with fully available self-control strength. Furthermore, different degrees of available self-control strength did not predict performance in participants who were low in state anxiety, but did in participants who were high in state anxiety. Thus increasing self-control strength could reduce the negative anxiety effects in sports and improve athletes' performance under pressure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE Primary nasal epithelial cells are used for diagnostic purposes in clinical routine and have been shown to be good surrogate models for bronchial epithelial cells in studies of airway inflammation and remodeling. We aimed at comparing different instruments allowing isolation of nasal epithelial cells. METHODS Primary airway epithelial cell cultures were established using cells acquired from the inferior surface of the middle turbinate of both nostrils. Three different instruments to isolate nasal cells were used: homemade cytology brush, nasal swab, and curette. Cell count, viability, time until a confluent cell layer was reached, and success rate in establishing cell cultures were evaluated. A standard numeric pain intensity scale was used to assess the acceptability of each instrument. RESULTS Sixty healthy adults (median with interquartile range [IQR] age of 31 [26-37] years) participated in the study. Higher number of cells (×10(5) cells/ml) was obtained using brushes (9.8 [5.9-33.5]) compared to swabs (2.4 [1.5-3.9], p < 0.0001) and curettes (5.5 [4.4-6.9], p < 0.01). Cell viability was similar between groups. Cells obtained by brushes had the fastest growth rate, and the success rate in establishing primary cell cultures was highest with brushes (90% vs. 65% for swabs and 70% for curettes). Pain was highest with curettes (VAS score 4.0 [3.0-5.0] out of 10). The epithelial phenotype of the cultures was confirmed through cytokeratin and E-cadherin staining. CONCLUSIONS All three types of instruments allow collection and growth of human nasal epithelial cells with good acceptability to study participants. The most efficient instrument is the nasal brush.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research examines the role of social context in ethical consumption, specifically, the extent to which anonymity and social control influence individuals' decisions to purchase organic and Fair Trade coffee. Our research design overcomes biases of prior research by combining framing and discrete choice experiments in a survey. We systematically vary coffee growing method (organic or not), import status (Fair Trade or not), flavor, and price across four social contexts that vary in degree of anonymity and normative social control. The social contexts are buying coffee online, in a large grocery store, in a small neighborhood shop, and for a meeting of a human rights group. Subjects comprise 1,103 German and American undergraduate students. We find that social context indeed influences subjects' ethical consumer decisions, especially in situations with low anonymity and high social control. In addition, gender, coffee buying, and subjective social norms trigger heterogeneity regarding stated ethical consumption and the effects of social context. These results suggest previous research has underestimated the relevance of social context for ethical consumption and overestimated altruistic motives of ethical consumers. Our study demonstrates the great potential of discrete choice experiments for the study of social action and decision making processes in sociology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Buruli ulcer (BU) is a slowly progressing, necrotising disease of the skin caused by infection with Mycobacterium ulcerans. Non-ulcerative manifestations are nodules, plaques and oedema, which may progress to ulceration of large parts of the skin. Histopathologically, BU is characterized by coagulative necrosis, fat cell ghosts, epidermal hyperplasia, clusters of extracellular acid fast bacilli (AFB) in the subcutaneous tissue and lack of major inflammatory infiltration. The mode of transmission of BU is not clear and there is only limited information on the early pathogenesis of the disease available. METHODOLOGY/PRINCIPAL FINDINGS For evaluating the potential of the pig as experimental infection model for BU, we infected pigs subcutaneously with different doses of M. ulcerans. The infected skin sites were excised 2.5 or 6.5 weeks after infection and processed for histopathological analysis. With doses of 2 × 10(7) and 2 × 10(6) colony forming units (CFU) we observed the development of nodular lesions that subsequently progressed to ulcerative or plaque-like lesions. At lower inoculation doses signs of infection found after 2.5 weeks had spontaneously resolved at 6.5 weeks. The observed macroscopic and histopathological changes closely resembled those found in M. ulcerans disease in humans. CONCLUSION/SIGNIFICANCE Our results demonstrate that the pig can be infected with M. ulcerans. Productive infection leads to the development of lesions that closely resemble human BU lesions. The pig infection model therefore has great potential for studying the early pathogenesis of BU and for the development of new therapeutic and prophylactic interventions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

(31)P MRS magnetization transfer ((31)P-MT) experiments allow the estimation of exchange rates of biochemical reactions, such as the creatine kinase equilibrium and adenosine triphosphate (ATP) synthesis. Although various (31)P-MT methods have been successfully used on isolated organs or animals, their application on humans in clinical scanners poses specific challenges. This study compared two major (31)P-MT methods on a clinical MR system using heteronuclear surface coils. Although saturation transfer (ST) is the most commonly used (31)P-MT method, sequences such as inversion transfer (IT) with short pulses might be better suited for the specific hardware and software limitations of a clinical scanner. In addition, small NMR-undetectable metabolite pools can transfer MT to NMR-visible pools during long saturation pulses, which is prevented with short pulses. (31)P-MT sequences were adapted for limited pulse length, for heteronuclear transmit-receive surface coils with inhomogeneous B1 , for the need for volume selection and for the inherently low signal-to-noise ratio (SNR) on a clinical 3-T MR system. The ST and IT sequences were applied to skeletal muscle and liver in 10 healthy volunteers. Monte-Carlo simulations were used to evaluate the behavior of the IT measurements with increasing imperfections. In skeletal muscle of the thigh, ATP synthesis resulted in forward reaction constants (k) of 0.074 ± 0.022 s(-1) (ST) and 0.137 ± 0.042 s(-1) (IT), whereas the creatine kinase reaction yielded 0.459 ± 0.089 s(-1) (IT). In the liver, ATP synthesis resulted in k = 0.267 ± 0.106 s(-1) (ST), whereas the IT experiment yielded no consistent results. ST results were close to literature values; however, the IT results were either much larger than the corresponding ST values and/or were widely scattered. To summarize, ST and IT experiments can both be implemented on a clinical body scanner with heteronuclear transmit-receive surface coils; however, ST results are much more robust against experimental imperfections than the current implementation of IT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of this study was to assess the in vitro differentiation capacity of human bone marrow-derived stem cells (hBMSCs) along retinal lineages. Mononuclear cells (MNC) were isolated from bone marrow (BM) and mobilized peripheral blood (mPB) using Ficoll-Paque density gradient centrifugation, and were sorted by magnetic-activated cell sorting (MACS) for specific stem cell subsets (CD34(+)CD38(+)/CD34(+)CD38(-)). These cells were then co-cultured on human retinal pigment epithelial cells (hRPE) for 7 days. The expression of stem cell, neural and retina-specific markers was examined by immunostaining, and the gene expression profiles were assessed after FACS separation of the co-cultured hBMSCs by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Furthermore, in vitro functionality of the differentiated cells was analyzed by quantifying phagocytosis of CY5-labeled photoreceptor outer segments (POS). After 7 days of co-culture, hBMSCs adopted an elongated epithelial-like morphology and expressed RPE-specific markers, such as RPE65 and bestrophin. In addition, these differentiated cells were able to phagocytose OS, one of the main characteristics of native RPE cells. Our data demonstrated that human CD34(+)CD38(-) hBMSC may differentiate towards an RPE-like cell type in vitro and could become a new type of autologous donor cell for regenerative therapy in retinal degenerative diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The serotonin (5-hydroxtryptamine, 5-HT) system plays a role in analgesia and emesis. The aim of this study was to test whether opioids or ketamine inhibit the human 5-HT transporter and whether this increases free plasma 5-HT concentrations. HEK293 cells, stably transfected with the human 5-HT transporter cDNA, were incubated with morphine, hydromorphone, fentanyl, alfentanil, pethidine (meperidine), tramadol, ketamine, and the reference substance citalopram (specific 5-HT transporter inhibitor). The uptake of [(3)H]5-HT was measured by liquid scintillation counting. In a second series of experiments, study drugs were incubated with plasma of ten healthy blood donors and change of 5-HT plasma-concentrations were measured (ELISA). The end point was the inhibition of the 5-HT transporter by different analgesics either in HEK293 cells or in human platelets ex vivo. Tramadol, pethidine, and ketamine suppressed [(3)H]5-HT uptake dose-dependently with an IC50 of 1, 20.9, and 230 μM, respectively. These drugs also prevented 5-HT uptake in platelets with an increase in free plasma 5-HT. Free 5-HT concentrations in human plasma were increased by citalopram 1 μM, tramadol 20 μM, pethidine 30 μM, and ketamine 100 μM to 280 [248/312]%, 269 [188/349]%, and 149 [122/174]%, respectively, compared to controls without any co-incubation (means [95 % CI]; all p < 0.005). No change in both experimental settings was observed for the other opioids. Tramadol and pethidine inhibited the 5-HT transporter in HEK293 cells and platelets. This inhibition may contribute to serotonergic effects when these opioids are given in combination, e.g., with monoamine oxidase inhibitors or selective serotonin reuptake inhibitors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vertebral compression fracture is a common medical problem in osteoporotic individuals. The quantitative computed tomography (QCT)-based finite element (FE) method may be used to predict vertebral strength in vivo, but needs to be validated with experimental tests. The aim of this study was to validate a nonlinear anatomy specific QCT-based FE model by using a novel testing setup. Thirty-seven human thoracolumbar vertebral bone slices were prepared by removing cortical endplates and posterior elements. The slices were scanned with QCT and the volumetric bone mineral density (vBMD) was computed with the standard clinical approach. A novel experimental setup was designed to induce a realistic failure in the vertebral slices in vitro. Rotation of the loading plate was allowed by means of a ball joint. To minimize device compliance, the specimen deformation was measured directly on the loading plate with three sensors. A nonlinear FE model was generated from the calibrated QCT images and computed vertebral stiffness and strength were compared to those measured during the experiments. In agreement with clinical observations, most of the vertebrae underwent an anterior wedge-shape fracture. As expected, the FE method predicted both stiffness and strength better than vBMD (R2 improved from 0.27 to 0.49 and from 0.34 to 0.79, respectively). Despite the lack of fitting parameters, the linear regression of the FE prediction for strength was close to the 1:1 relation (slope and intercept close to one (0.86 kN) and to zero (0.72 kN), respectively). In conclusion, a nonlinear FE model was successfully validated through a novel experimental technique for generating wedge-shape fractures in human thoracolumbar vertebrae.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trabecular bone is a porous mineralized tissue playing a major load bearing role in the human body. Prediction of age-related and disease-related fractures and the behavior of bone implant systems needs a thorough understanding of its structure-mechanical property relationships, which can be obtained using microcomputed tomography-based finite element modeling. In this study, a nonlinear model for trabecular bone as a cohesive-frictional material was implemented in a large-scale computational framework and validated by comparison of μFE simulations with experimental tests in uniaxial tension and compression. A good correspondence of stiffness and yield points between simulations and experiments was found for a wide range of bone volume fraction and degree of anisotropy in both tension and compression using a non-calibrated, average set of material parameters. These results demonstrate the ability of the model to capture the effects leading to failure of bone for three anatomical sites and several donors, which may be used to determine the apparent behavior of trabecular bone and its evolution with age, disease, and treatment in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present review, we deliver an overview of the involvement of metabotropic glutamate receptor 5 (mGluR5) activity and density in pathological anxiety, mood disorders and addiction. Specifically, we will describe mGluR5 studies in humans that employed Positron Emission Tomography (PET) and combined the findings with preclinical animal research. This combined view of different methodological approaches-from basic neurobiological approaches to human studies-might give a more comprehensive and clinically relevant view of mGluR5 function in mental health than the view on preclinical data alone. We will also review the current research data on mGluR5 along the Research Domain Criteria (RDoC). Firstly, we found evidence of abnormal glutamate activity related to the positive and negative valence systems, which would suggest that antagonistic mGluR5 intervention has prominent anti-addictive, anti-depressive and anxiolytic effects. Secondly, there is evidence that mGluR5 plays an important role in systems for social functioning and the response to social stress. Finally, mGluR5's important role in sleep homeostasis suggests that this glutamate receptor may play an important role in RDoC's arousal and modulatory systems domain. Glutamate was previously mostly investigated in non-human studies, however initial human clinical PET research now also supports the hypothesis that, by mediating brain excitability, neuroplasticity and social cognition, abnormal metabotropic glutamate activity might predispose individuals to a broad range of psychiatric problems.