876 resultados para Human Mitochondrial-dna


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Almost half of the 4547 described bee flies (Bombyliidae: Diptera) in the world belong to the subfamily Anthracinae, with most of the world's diversity in three cosmopolitan tribes: Villini, Anthracini and Exoprosopini. Molecular data from 815 base pairs of 16S mitochondrial DNA and morphological characters from species-groups of these tribes in Australia were analysed cladistically. The results show that the relationships between the anthracine tribes reflect those found in a previous morphological analysis. The genera of the Anthracinae in Australia are monophyletic, except for Ligyra Newman, and are assigned to tribes. Although simultaneous analysis of the combined molecular and morphological data produced clades found in both separate analyses, the different data sources are significantly incongruent. We use phylogenetic measures to examine support for the relationships among the Australian Anthracinae inferred by the molecular and morphological data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Use of PCR in the field of molecular diagnostics has increased to the point where it is now accepted as the standard method for detecting nucleic acids from a number of sample and microbial types. However, conventional PCR was already an essential tool in the research laboratory. Real-time PCR has catalysed wider acceptance of PCR because it is more rapid, sensitive and reproducible, while the risk of carryover contamination is minimised. There is an increasing number of chemistries which are used to detect PCR products as they accumulate within a closed reaction vessel during real-time PCR. These include the non-specific DNA-binding fluorophores and the specific, fluorophore-labelled oligonucleotide probes, some of which will be discussed in detail. It is not only the technology that has changed with the introduction of real-time PCR. Accompanying changes have occurred in the traditional terminology of PCR, and these changes will be highlighted as they occur. Factors that have restricted the development of multiplex real-time PCR, as well as the role of real-time PCR in the quantitation and genotyping of the microbial causes of infectious disease, will also be discussed. Because the amplification hardware and the fluorogenic detection chemistries have evolved rapidly, this review aims to update the scientist on the current state of the art. Additionally, the advantages, limitations and general background of real-time PCR technology will be reviewed in the context of the microbiology laboratory.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In recent years there has been much progress in our understanding of the phylogeny and evolution of ticks, in particular the hard ticks (Ixodidae). Indeed, a consensus about the phylogeny of the hard ticks has emerged which is quite different to the working hypothesis of 10 years ago. So that the classification reflects our knowledge of ticks, several changes to the nomenclature of ticks are imminent or have been made. One subfamily, the Hyalomminae, should be sunk, while another, the Bothriocrotoninae, has been created (Klompen, Dobson & Barker, 2002). Bothriocrotoninae, and its sole genus Bothriocroton, have been created to house an early-diverging ('basal') lineage of endemic Australian ticks that used to be in the genus Aponomma. The remaining species of the genus Aponomma have been moved to the genus Amblyomma. Thus, the name Aponomma is no longer a valid genus name. The genus Rhipicephalus is paraphyletic with respect to the genus Boophilus. Thus, the genus Boophilus has become a subgenus of the genus Rhipicephalus (Murrell & Barker, 2003). Knowledge of the phylogenetic relationships of ticks has also provided new insights into the evolution of ornateness and of their life cycles, and has allowed the historical zoogeography of ticks to be studied. Finally, we present a list of the 899 valid genus and species names of ticks as of February 2004.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The molecular clock does not tick at a uniform rate in all taxa but maybe influenced by species characteristics. Eusocial species (those with reproductive division of labor) have been predicted to have faster rates of molecular evolution than their nonsocial relatives because of greatly reduced effective population size; if most individuals in a population are nonreproductive and only one or few queens produce all the offspring, then eusocial animals could have much lower effective population sizes than their solitary relatives, which should increase the rate of substitution of nearly neutral mutations. An earlier study reported faster rates in eusocial honeybees and vespid wasps but failed to correct for phylogenetic nonindependence or to distinguish between potential causes of rate variation. Because sociality has evolved independently in many different lineages, it is possible to conduct a more wide-ranging study to test the generality of the relationship. We have conducted a comparative analysis of 25 phylogenetically independent pairs of social lineages and their nonsocial relatives, including bees, wasps, ants, termites, shrimps, and mole rats, using a range of available DNA sequences (mitochondrial and nuclear DNA coding for proteins and RNAs, and nontranslated sequences). By including a wide range of social taxa, we were able to test whether there is a general influence of sociality on rates of molecular evolution and to test specific predictions of the hypothesis: (1) that social species have faster rates because they have reduced effective population sizes; (2) that mitochondrial genes would show a greater effect of sociality than nuclear genes; and (3) that rates of molecular evolution should be correlated with the degree of sociality. We find no consistent pattern in rates of molecular evolution between social and nonsocial lineages and no evidence that mitochondrial genes show faster rates in social taxa. However, we show that the most highly eusocial Hymenoptera do have faster rates than their nonsocial relatives. We also find that social parasites (that utilize the workers from related species to produce their own offspring) have faster rates than their social relatives, which is consistent with an effect of lower effective population size on rate of molecular evolution. Our results illustrate the importance of allowing for phylogenetic nonindependence when conducting investigations of determinants of variation in rate of molecular evolution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Australian wet forests have undergone a contraction in range since the mid-Tertiary, resulting in a fragmented distribution along the east Australian coast incorporating several biogeographical barriers. Variation in mitochondrial DNA and morphology within the satin bowerbird was used to examine biogeographical structure throughout almost the entire geographical extent of these wet forest fragments. We used several genetic analysis techniques, nested clade and barrier analyses, that use patterns inherent in the data to describe the spatial structuring. We also examined the validity of the two previously described satin bowerbird subspecies that are separated by well-defined biogeographical barriers and tested existing hypotheses that propose divergence occurs within each subspecies across two other barriers, the Black Mountain corridor and the Hunter Valley. Our data showed that the two subspecies were genetically and morphologically divergent. The northern subspecies, found in the Wet Tropics region of Queensland, showed little divergence across the Black Mountain corridor, a barrier found to be significant in other Wet Tropics species. Biogeographical structure was found through southeastern Australia; three geographically isolated populations showed genetic differentiation, although minimal divergence was found across the proposed Hunter Valley barrier. A novel barrier was found separating inland and coastal populations in southern New South Wales. Little morphological divergence was observed within subspecies, bar a trend for birds to be larger in the more southerly parts of the species' range. The results from both novel and well-established genetic analyses were similar, providing greater confidence in the conclusions about spatial divergence and supporting the validity of these new techniques.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The genome of the European hedgehog, Erinaceus concolor and E. europaeus, shows a strong signal of cycles of restriction to glacial refugia and postglacial expansion. Patterns of expansion, however, differ for mitochondrial DNA (mtDNA) and preliminary analysis of nuclear markers. In this study, we determine phylogeographic patterns in the hedgehog using two loci of the major histocompatibility complex (MHC), isolated for the first time in hedgehogs. These genes show long persistence times and high polymorphism in many species because of the actions of balancing selection. Among 84 individuals screened for variation, only two DQA alleles were identified in each species, but 10 DQB alleles were found in E. concolor and six in E. europaeus. A strong effect of demography on patterns of DQB variability is observed, with only weak evidence of balancing selection. While data from mtDNA clearly subdivide both species into monophyletic subgroups, the MHC data delineate only E. concolor into distinct subgroups, supporting the preliminary findings of other nuclear markers. Together with differences in variability, this suggests that the refugia history and/or expansion patterns of E. concolor and E. europaeus differ.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pine beauty moth, Panolis flammea (Denis & Schiffermuller), is a recent but persistent pest of lodgepole pine plantations in Scotland, but exists naturally at low levels within remnants and plantations of Scots pine. To test whether separate host races occur in lodgepole and Scots pine stands and to examine colonization dynamics, allozyme, randomly amplified polymorphic DNA (RAPD) and mitochondrial variation were screened within a range of Scottish samples. RAPD analysis indicated limited long distance dispersal (F-ST=0.099), and significant isolation by distance (P < 0.05); but that colonization between more proximate populations was often variable, from extensive to limited exchange. When compared with material from Germany, Scottish samples were found to be more diverse and significantly differentiated for all markers. For mtDNA, two highly divergent groups of haplotypes were evident, one group contained both German and Scottish samples and the other was predominantly Scottish. No genetic differentiation was evident between P. flammea populations sampled from different hosts, and no diversity bottleneck was observed in the lodgepole group. Indeed, lodgepole stands appear to have been colonized on multiple occasions from Scots pine sources and neighbouring populations on different hosts are close to panmixia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To explore the evolutionary consequences of climate-induced fluctuations in distribution of rainforest habitat we contrasted demographic histories of divergence among three lineages of Australian rainforest endemic skinks. The red-throated rainbow skink, Carlia rubrigularis, consists of morphologically indistinguishable northern and southern mitochondrial DNA (mtDNA) lineages that are partially reproductively isolated at their parapatric boundary. The third lineage (C. rhomboidalis) inhabits rainforests just to the south of C. rubrigularis, has blue, rather than red-throated males, and for mtDNA is more closely related to southern C. rubrigularis than is northern C. rubrigularis. Multigene coalescent analyses supported more recent divergence between morphologically distinct lineages than between morphologically conservative lineages. There was effectively no migration and therefore stronger isolation between southern C. rubrigularis and C. rhomboidalis, and low unidirectional migration between morphologically conservative lineages of C. rubrigularis. We found little or no evidence for strong differences in effective population size, and hence different contributions of genetic drift in the demographic history of the three lineages. Overall the results suggest contrasting responses to long-term fluctuations in rainforest habitats, leading to varying opportunities for speciation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Allozyme and molecular sequence data from the malaria vector Anopheles flavirostris (Ludlow) (Diptera: Culicidae) were analysed from 34 sites throughout the Philippines, including the type locality, to test the hypothesis that this taxon is a single panmictic species. A finer-scaled allozyme study, of mainly Luzon samples, revealed no fixed genetic differences in sympatric sites and only low levels of variation. We obtained data from partial sequences for the internal transcribed spacer 2 (ITS2) (483 bp), the third domain (D3) (330 bp) of the 28S ribosomal DNA subunit and cytochrome c oxidase subunit I (COI) of mitochondrial DNA (261 bp). No sequence variation was observed for ITS2, only a one base pair difference was observed between Philippine and Indonesian D3 sequences and An. flavirostris sequences were unique, confirming their diagnostic value for this taxon. Sixteen COI haplotypes were identified, giving 25 parsimony informative sites. Neighbour-Joining, Maximum Parsimony, Maximum Likelihood and Bayesian phylogenetic analysis of COI sequences for An. flavirostris and outgroup taxa revealed strong branch support for the monophyly of An. flavirostris, thus confirming that Philippine populations of this taxon comprise a single separate species within the Minimus Subgroup of the Funestus Group. Variation in the behaviour of An. flavirostris is likely to be intraspecific rather than interspecific in origin. © 2006 The Royal Entomological Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ecological and genetic studies of marine turtles generally support the hypothesis of natal homing, but leave open the question of the geographical scale of genetic exchange and the capacity of turtles to shift breeding sites. Here we combine analyses of mitochondrial DNA (mtDNA) variation and recapture data to assess the geographical scale of individual breeding populations and the distribution of such populations through Australasia. We conducted multiscale assessments of mtDNA variation among 714 samples from 27 green turtle rookeries and of adult female dispersal among nesting sites in eastern Australia. Many of these rookeries are on shelves that were flooded by rising sea levels less than 10 000 years (c. 450 generations) ago. Analyses of sequence variation among the mtDNA control region revealed 25 haplotypes, and their frequency distributions indicated 17 genetically distinct breeding stocks (Management Units) consisting either of individual rookeries or groups of rookeries in general that are separated by more than 500 km. The population structure inferred from mtDNA was consistent with the scale of movements observed in long-term mark-recapture studies of east Australian rookeries. Phylogenetic analysis of the haplotypes revealed five clades with significant partitioning of sequence diversity (Phi = 68.4) between Pacific Ocean and Southeast Asian/Indian Ocean rookeries. Isolation by distance was indicated for rookeries separated by up to 2000 km but explained only 12% of the genetic structure. The emerging general picture is one of dynamic population structure influenced by the capacity of females to relocate among proximal breeding sites, although this may be conditional on large population sizes as existed historically across this region.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Australian ghost bat is a large, opportunistic carnivorous species that has undergone a marked range contraction toward more mesic, tropical sites over the past century. Comparison of mitochondrial DNA (mtDNA) control region sequences and six nuclear microsatellite loci in 217 ghost bats from nine populations across subtropical and tropical Australia revealed strong population subdivision (mtDNA phi(ST) = 0.80; microsatellites URST = 0.337). Low-latitude (tropical) populations had higher heterozygosity and less marked phylogeographic structure and lower subdivision among sites within regions (within Northern Territory [NT] and within North Queensland [NQ]) than did populations at higher latitudes (subtropical sites; central Queensland [CQ]), although sampling of geographically proximal breeding sites is unavoidably restricted for the latter. Gene flow among populations within each of the northern regions appears to be male biased in that the difference in population subdivision for mtDNA and microsatellites (NT phi(ST) = 0.39, URST = 0.02; NQ phi(ST) = 0.60, URST = -0.03) is greater than expected from differences in the effective population size of haploid versus diploid loci. The high level of population subdivision across the range of the ghost bat contrasts with evidence for high gene flow in other chiropteran species and may be due to narrow physiological tolerances and consequent limited availability of roosts for ghost bats, particularly across the subtropical and relatively arid regions. This observation is consistent with the hypothesis that the contraction of the species' range is associated with late Holocene climate change. The extreme isolation among higher-latitude populations may predispose them to additional local extinctions if the processes responsible for the range contraction continue to operate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introduction – Why do we need ‘biomarkers? Biomarkers of protein oxidation Introduction Major issues/questions Protein carbonyl biomarkers Biochemistry Methods of measurement Storage, stability and limitations in use Protein thiol biomarkers Biochemistry Methods of measurement Storage, stability and limitations on use Aliphatic amino acid biomarkers Biochemistry Methods of measurement Storage, stability and limitations on use Oxidised Tryptophan Biomarkers Biochemistry Method of measurement Storage, stability and limitations on use Oxidised tyrosine biomarkers Biochemistry Methods of measurement Storage, stability and limitations on use Formation of neoepitopes on oxidised proteins Validation of assays for protein oxidation biomarkers Relationship of protein oxidation to disease Modulation of protein oxidation biomarkers by antioxidants Future perspectives Introduction to lipid peroxidation biomarkers Introduction: biochemistry of lipid peroxidation Malondialdehyde Methods of measurement Storage, stability and limitations on use Conjugated dienes Method of measurement Storage, stability and limitations of use LDL lag phase Method of measurement Storage, stability and limitations of use Hydrocarbon gases Biochemistry Method of measurement Storage, stability and limitations on use Lipofuscin Biochemistry Method of measurement Storage, stability and limitation on use Lipid peroxides Biochemistry Method of measurement Storage, stability and limitations on use Isoprostanes Biochemistry Method of measurement Storage, stability and limitations on use Possible new biomarkers of lipid oxidation Relationship of lipid peroxidation to disease Modulation of lipid peroxidation biomarkers by antioxidants Functional consequences of lipid peroxidation Contribution of dietary intake to lipid peroxidation products Biomarkers of DNA oxidation Introduction Confounding factors Units and terminology Nuclear and mitochondrial DNA damage Lymphocytes as surrogate tissues Measurement of DNA damage with the comet assay Practical details Storage, stability, and limitations of the assay Measurement of DNA base oxidation by HPLC Practical details Storage, stability and limitations of the method Measurement of DNA base oxidation by GC–MS Biochemistry of 8-oxoguanine, adenine and fapy derivatives Methods of measurement Storage, stability and limitations of the method Analysis of guanine oxidation products in urine Method of measurement Limitations and criticisms Immunochemical methods Methods of measurement Storage, stability, and limitations of the assay 32P post-labelling Method of measurement Limitations and criticisms Validation of assays for DNA oxidation Oxo-dGuo in lymphocyte DNA Urinary measurements DNA–aldehyde adducts Biochemistry Method of measurement Products of reactive nitrogen species Endpoints arising from oxidative DNA damage Mutations Chromosome aberrations Micronuclei Site-specific DNA damage Relationship of DNA oxidation to disease Modulation of DNA oxidation biomarkers by antioxidants Direct and indirect effects of oxidative stress: measures of total oxidant/antioxidant levels Visualisation of cellular oxidants Biochemistry: histochemical detection of ROS Method of measurement Limitations, storage and stability Measurement of hydrogen peroxide Biochemistry Methods of measurement Storage, stability and limitations on use Measurement of the ratio of antioxidant/oxidised antioxidant Biochemistry Method of measurement Storage, stability and limitations on use Total antioxidant capacity Biochemistry Terminology Methods of measurement Storage, stability and limitations on use Validation of assays for direct oxidant and antioxidant biomarkers Relationship of oxidant/antioxidant measurement to disease Modulation of oxidant/antioxidant biomarkers by dietary antioxidants Induction of genes in response to oxidative stress Background Measurement of antioxidant responsive genes and proteins Effects of antioxidant intake on the activity of antioxidant enzymes

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The primary objective of this proposal was to determine whether mitochondrial oxidative stress and variation in a particular mtDNA lineage contribute to the risk of developing cortical dysplasia and are potential contributing factors in epileptogenesis in children. The occurrence of epilepsy in children is highly associated with malformations of cortical development (MCD). It appears that MCD might arise from developmental errors due to environmental exposures in combination with inherited variation in response to environmental exposures and mitochondrial function. Therefore, it is postulated that variation in a particular mtDNA lineage of children contributes to the effects of mitochondrial DNA damage on MCD phenotype. Quantitative PCR and dot blot were used to examine mitochondrial oxidative damage and single nucleotide polymorphism (SNP) in the mitochondrial genome in brain tissue from 48 pediatric intractable epilepsy patients from Miami Children’s Hospital and 11 control samples from NICHD Brain and Tissue Bank for Developmental Disorders. Epilepsy patients showed higher mtDNA copy number compared to normal health subjects (controls). Oxidative mtDNA damage was lower in non-neoplastic but higher in neoplastic epilepsy patients compared to controls. There was a trend of lower mtDNA oxidative damage in the non-neoplastic (MCD) patients compared to controls, yet, the reverse was observed in neoplastic (MCD and Non-MCD) epilepsy patients. The presence of mtDNA SNP and haplogroups did not show any statistically significant relationships with epilepsy phenotypes. However, SNPs G9804A and G9952A were found in higher frequencies in epilepsy samples. Logistic regression analysis showed no relationship between mtDNA oxidative stress, mtDNA copy number, mitochondrial haplogroups and SNP variations with epilepsy in pediatric patients. The levels of mtDNA copy number and oxidative mtDNA damage and the SNPs G9952A and T10010C predicted neoplastic epilepsy, however, this was not significant due to a small sample size of pediatric subjects. Findings of this study indicate that an increase in mtDNA content may be compensatory mechanisms for defective mitochondria in intractable epilepsy and brain tumor. Further validation of these findings related to mitochondrial genotypes and mitochondrial dysfunction in pediatric epilepsy and MCD may lay the ground for the development of new therapies and prevention strategies during embryogenesis.