997 resultados para Holes(Openings)
Resumo:
Distributions of free and bound n-alkanes, n-alkanoic acids, and n-alkanols were determined in order to compare the character of organic matter contained in organic-carbon-rich sediments from two sites sampled by the hydraulic piston corer. Two diatomaceous debris-flow samples of Pleistocene age were obtained from Hole 530B in the Angola Basin. A sample of bioturbated Pleistocene diatomaceous clay and another of bioturbated late Miocene nannofossil clay were collected from Hole 532 on the Walvis Ridge. Geolipid distributions of all samples contain large terrigenous contributions and lesser amounts of marine components. Similarities in organic matter contents of Hole 530B and Hole 532 sediments suggest that a common depositional setting, probably on the Walvis Ridge, was the original source of these sediments through Quaternary, and possibly late Neogene, times and that downslope relocation of these biogenic deposits has frequently occurred.
Resumo:
Distinctive light-dark color cycles in sediment beneath the Benguela Current Upwelling System indicate repetitive alternations in sediment delivery and deposition. Geochemical proxies for paleoproductivity and for depositional conditions were employed to investigate the paleoceanographic processes involved in creating these cycles in three mid-Pleistocene intervals from ODP Sites 1082 and 1084. Concentrations of total organic carbon (TOC) vary between 3.5 and 17.1%. Concentrations of CaCO3 vary inversely to TOC and Al, which suggests that both carbonate dissolution and terrigenous dilution contribute to the light-dark cycles. Opal concentrations are independent of both TOC and CaCO3, therefore eliminating diatom production and lateral transport of shelf material as causes of the light-dark cycles. d13Corg and d15Ntot values do not vary across light-dark sediment intervals, implying that the extent of relative nutrient utilization did not change. The stable d15Ntot values represent a balanced change in nitrate supply and export production and therefore indicate that productivity was elevated during deposition of the TOC-rich layers. Parallel changes in concentrations of indicator trace elements and TOC imply that changes in organic matter delivery influenced geochemical processes on the seafloor by controlling consumption of pore water oxygen. Cu, Ni, and Zn are enriched in the darker sediment as a consequence of greater organic matter delivery. Redox-sensitive metals vary due to loss (Mn and Ba) or enrichment (Mo) under reducing conditions created by TOC oxidation. Organic matter delivery impacts subsequent geochemical changes such as carbonate dissolution, sulfate reduction and the concentration of metals. Thus, export production is considered ultimately responsible for the generation of the color cycles.
Resumo:
The Okinawa Trough (OT) in the East Asian continental margin is characterized by thick terrigenous sediment and ubiquitous volcanic-hydrothermal activities. In this study, the clays collected during IODP Expedition 331 to the middle OT (Iheya North Knoll) were analyzed for mineralogical and geochemical compositions. By comparing with the clays from the East China Sea shelf and surrounding rivers, we examine different clay origins. The hydrothermal field in the mid-OT is dominated by Mg-rich chlorite, while the recharge zone has clay mineral assemblages similar to the shelf and rivers, showing high content of illite, subordinate chlorite and kaolinite and scarce smectite. Compared to the terrigenous clays, the hydrothermal clays in the OT have high concentrations of Mg, Mn and Zr but low Fe, Na, K, Ca, Ba, Sr, P, Sc and Ti, while the hydrothermal clays in the mid-ocean ridge are relatively enriched in Fe and V and depleted in Al, Mg, Zr, Sc and Ti. Different fractionation patterns of rare earth elements also register in the terrigenous and hydrothermal clays, diagnostic of variable clay origins. We infer that the OT hydrothermal clay was primarily formed by the chemical alteration of detrital sediments subject to the hydrothermal fluids. The remarkably different compositions of hydrothermal clays between the sediment-rich back arc basin like OT and the sediment-starved ocean ridge suggest different physical and chemical processes of hydrothermal fluids and fluid-rock/sediment reactions under various geologic settings.
Resumo:
Differences in regional responses to climate fluctuations are well documented on short time scales (e.g., El Niño-Southern Oscillation), but with the exception of latitudinal temperature gradients, regional patterns are seldom considered in discussions of ancient greenhouse climates. Contrary to the expectation of global warming or global cooling implicit in most treatments of climate evolution over millions of years, this paper shows that the North Atlantic warmed by as much as 6°C (1.5% decrease in d18O values of planktic foraminifera) during the Maastrichtian global cooling interval. We suggest that warming was the result of the importation of heat from the South Atlantic. Decreasing North Atlantic d18O values are also associated with increasing gradients in planktic d13C values, suggesting increasing surface-water stratification and a correlated strengthening of the North Atlantic Polar Front. If correct, this conclusion predicts arctic cooling during the late Maastrichtian. Beyond implications for the Maastrichtian, these data demonstrate that climate does not behave as if there is a simple global thermostat, even on geologic time scales.
Resumo:
Oxygen and carbon isotopic ratios were measured on left-coiling Neogloboquadrina pachyderma separated from sediments recovered from Holes 1096B (3152 m water depth) and 1101A (3280 m water depth) during Ocean Drilling Program Leg 178. The sediment samples were widely spaced, extending over the past 2.1 m.y. The nature of the sediments from which they were separated and the measured oxygen isotopic ratios show that N. pachyderma (s) is preserved in both glacial and interglacial sediments over the entire period, pointing to the possibility of extracting a detailed isotopic record at these sites extending back to 2.1 Ma.
Resumo:
Anisotropy in compressional-wave velocities in sedimentary rocks recovered by DSDP has been recognized by several investigators (Boyce, 1976; Tucholke et al., 1976; Carlson and Christensen, 1977). The anisotropy is also observed at elevated pressures in laboratory experiments, and thus probably persists at depth in some calcareous rocks (Schreiber et al., 1972; Christensen et al., 1973; Carlson and Christensen, 1979). Carlson and Christensen (1979) suggested that the observed velocity anisotropy was produced not by the alignment of cracks but by the alignment of c axes of calcite perpendicular to bedding during compaction, diagenesis, and recrystallization. On DSDP Leg 62, calcareous rocks were recovered from the western Mid-Pacific Mountains (sub-bottom depths of 452-823 m, Site 463) and southern Hess Rise (276-412 m, Site 465). Most of the calcareous rocks are horizontally laminated and color-banded, and ages are early Cenomanian to late Barremian (Site 463 and 465 reports, this volume). The purpose of this study is to confirm the velocity anisotropy in the calcareous rocks and to identify any relationship of anistropy to bulk density, mean velocity, and burial depth.