889 resultados para Historic sites - Conservation and restoration
Resumo:
During Leg 177 of the Ocean Drilling Program (ODP), well-preserved Middle Miocene to Pleistocene carbonate-rich sediment records were recovered on a north-south transect through the south-eastern Atlantic sector of the Southern Ocean at Site 1088 on the Agulhas Ridge and Site 1092 on Meteor Rise. Both sites were dominated by the deposition of calcareous nannofossil oozes through the Miocene, indicating low biological productivity in warm to temperate surface waters. A continuous increase in the proportions of foraminifera since the latest Miocene (6.5 Ma) points to enhanced nutrient supply, possibly related to the global 'biogenic bloom' event across the Miocene-Pliocene boundary. Since the Late Pliocene, different styles of biological productivity developed between the sites. Enhanced deposition of biosiliceous constituents at the southern Site 1092, particularly in the Early Pleistocene, is consistent with the formation of the Circum-Antarctic Opal Belt since 2.5 Ma in a setting near the Polar Front, whereas carbonate deposition still prevailed at the northern Site 1088 situated near the Subtropical Front. Clay-mineral tracers of water-mass advection together with the pattern of sedimentation rates and hiatuses reflect distinct pulses in the development of regional ocean circulation between 14 and 12 Ma, around 8 Ma and since 2.8 Ma. These pulses can be related to Antarctic ice-sheet extension that mediates the production and flow of southern source water, and stepwise increases in North Atlantic Deep Water production that drives global conveyor circulation. At Site 1088, illite chemistry and silt/clay ratios of the terrigenous sediment fraction reflect the history of terrestrial climate in southern Africa, with humid conditions prior to the Early Late Miocene (9.7 Ma), followed by a dry episode until 7.7 Ma. The latest Miocene and Early Pliocene were characterized by a humid episode until modern aridity was established in the Late Pliocene between 4.0 and 2.8 Ma. These climate changes were related to the latitudinal migration of climate belts in response to tectonically caused reorganizations in atmospheric and ocean circulation.
Resumo:
Low molecular weight hydrocarbon (LMWH) distributions were examined in sediments from Sites 1109 and 1115 in the western Woodlark Basin using purge-trap thermal adsorption/desorption gas analysis. A number of different hydrocarbon components >C1, which were not detected during shipboard gas analysis, were detected at both sites using the purge-trap procedure. Concentrations of ethane, propane, and butane remained relatively low (<100 pmol/g) throughout Site 1109 and had no consistent trend with depth. In contrast, the longer-chain components increased in concentration with depth. Hexane concentrations rose to 716 pmol/g at the base of the site with a concomitant increase in both 2-methyl- and 3-methylpentane. At Site 1115, concentrations of ethane, propane, butane, and isobutylene + 1-butene remained low (<60 pmol/g) throughout the site and again had no consistent trend with depth. 2-Methylpentane, 3-methylpentane, and hexane concentrations had a subsurface maximum that coincided with sediments containing abundant plant-rich material. The LMWH downhole profiles plus low in situ temperatures suggest that the LMWH components were formed in situ by low-temperature biological processes. Purge-trap analysis has indicated the presence of some unexpected deep low-temperature bacterial reactions, which demonstrates that further analysis of LMWH may provide valuable information at future Ocean Drilling Program sites.
Resumo:
Igneous rocks recovered from Ocean Drilling Program (ODP) Leg 134 Sites 827, 829, and 830 at the toe of the forearc slope of New Hebrides Island Arc were investigated, using petrography, mineral chemistry, major and trace element, and Sr, Nd, and Pb isotopic analyses. Basaltic and andesitic clasts, together with detrital crystals of plagioclase, pyroxenes, and amphiboles embedded in sed-lithic conglomerate or volcanic siltstone and sandstone of Pleistocene age, were recovered from Sites 827 and 830. Petrological features of these lava clasts suggest a provenance from the Western Belt of New Hebrides Island Arc; igneous constituents were incorporated into breccias and sandstones, which were in turn reworked into a second generation breccia. Drilling at Site 829 recovered a variety of igneous rocks including basalts and probably comagmatic dolerites and gabbros, plus rare ultramafic rocks. Geochemical features, including Pb isotopic ratios, of the mafic rocks are intermediate between midocean ridge basalts and island arc tholeiites, and these rocks are interpreted to be backarc basin basalts. No correlates of these mafic rocks are known from Espiritu Santo and Malakula islands, nor do they occur in the Pleistocene volcanic breccias at Sites 827 and 830. However, basalts with very similar trace element and isotopic compositions have been recovered from the northern flank of North d'Entrecasteaux Ridge at Site 828. It is proposed that igneous rocks drilled at Site 829 represent material from the North d'Entrecasteaux Ridge accreted onto the over-riding Pacific Plate during collision. An original depleted mantle harzburgitic composition is inferred for a serpentinite clast recovered at 407 meters below seafloor (mbsf) in Hole 829A. Its provenance is a matter of speculation. It could have been brought up along a deep thrust fault affecting the Pacific Plate at the colliding margin, or analogous to the Site 829 basaltic lavas, it may represent material accreted from the North d'Entrecasteaux Ridge.
Resumo:
We present new revised composite depth scales for Ocean Drilling Program Leg 198 Sites 1209, 1210, and 1211, drilled at Shatsky Rise in the western Pacific Ocean. Reinterpretation of high-resolution physical property data, with the main focus on magnetic susceptibility as the primary parameter for hole-to-hole correlation, revealed that the shipboard composite records had to be revised below 124.87 meters composite depth (mcd) for Site 1209, below 142.45 mcd for Site 1210, and below 88.64 mcd for Site 1211. The revised composite records comprise Paleogene and Cretaceous sediments at all three sites. As a result of the additional adjustments, the revised mcd records of Sites 1209 and 1210 are 13.48 and 2.69 m longer than the original spliced records, respectively. The original splice of Site 1211 has undergone minor adjustments only to match those of Sites 1209 and 1210. Moreover, detailed correlation of sections outside the new spliced records enable samples already taken to be placed into the new revised composite depth scale.
Resumo:
Sites 800 and 801 in the Pigafetta Basin allow the sedimentary history over the oldest remaining Pacific oceanic crust to be established. Six major deposition stages and events are defined by the main lithologic units from both sites. Mineralogical and chemical investigations were run on a large set of samples from these units. The data enable the evolution of the sediments and their depositional environments to be characterized in relation to the paleolatitudinal motion of the sites. The upper part of the basaltic crust at Site 801 displays a complex hydrothermal and alteration evolution expressed particularly by an ochre siliceous deposit comparable to that found in the Cyprus ophiolite. The oldest sedimentary cover at Site 801 was formed during the Callovian-Bathonian (stage 1) with red basal siliceous and metalliferous sediments similar to those found in supraophiolite sequences, and formed near an active ridge axis in an open ocean. Biosiliceous sedimentation prevailed throughout the Oxfordian to Campanian, with rare incursions of calcareous input during the middle Cretaceous (stages 2, 4, and 5). The biosiliceous sedimentation was drastically interrupted during the Aptian-Albian by thick volcaniclastic turbidite deposits (stage 3). The volcanogenic phases are pervasively altered and the successive secondary mineral parageneses (with smectites, celadonite, clinoptilolite, phillipsite, analcime, calcite, and quartz) define a "mineral stratigraphy" within these deposits. From this mineral stratigraphy, a similar lithologic layer is defined at the top of the Site 800 turbidite unit and the bottom of the Site 801 turbidite unit. Then, the two sites appear to have been located at the same distal distance from a volcanic source (hotspot). They crossed this locality, at about 10°S, at different times (latest Aptian for Site 800, middle Albian for Site 801). The Cretaceous siliceous sedimentation stopped during the late Campanian and was followed by deposition of Cenozoic pelagic red clay (stage 6). This deep-sea facies, which formed below the carbonate compensation depth, contains variable zeolite authigenesis in relation to the age of deposition, and records the global middle Cenozoic hiatus events. At the surface, the red clay from this part of the Pacific shows a greater detrital component than its equivalents from the central Pacific deep basins.
Resumo:
57Fe Mössbauer spectra for 26 sediment and 6 carbonate concretion samples from Sites 798 and 799 were recorded at 293 K. Most spectra were deconvolved to two quadrupole doublets without magnetic hyperfine structure. Typical Mössbauer parameters were: isomer shift (I.S.) = 0.34 mm/s and quadrupole splitting (Q.S.) = 0.64 mm/s for the paramagnetic Fe3+ component (partly, pyrite); I.S. = 1.13 mm/s and Q.S. = 2.64 mm/s for the high-spin Fe2+ component derived from iron-bearing aluminosilicates. A few spectra included other high-spin Fe2+ components ascribed to iron-bearing carbonate minerals (e.g., ferroan magnesite), according to the Mössbauer parameters for Fe2+ in the carbonate concretions. We present the distribution of iron among different chemical forms as a function of depth. These data might indicate changes of depositional and diagenetic conditions.
Resumo:
Analytical challenges in obtaining high quality measurements of rare earth elements (REEs) from small pore fluid volumes have limited the application of REEs as deep fluid geochemical tracers. Using a recently developed analytical technique, we analyzed REEs from pore fluids collected from Sites U1325 and U1329, drilled on the northern Cascadia margin during the Integrated Ocean Drilling Program (IODP) Expedition 311, to investigate the REE behavior during diagenesis and their utility as tracers of deep fluid migration. These sites were selected because they represent contrasting settings on an accretionary margin: a ponded basin at the toe of the margin, and the landward Tofino Basin near the shelf's edge. REE concentrations of pore fluid in the methanogenic zone at Sites U1325 and U1329 correlate positively with concentrations of dissolved organic carbon (DOC) and alkalinity. Fractionations across the REE series are driven by preferential complexation of the heavy REEs. Simultaneous enrichment of diagenetic indicators (DOC and alkalinity) and of REEs (in particular the heavy elements Ho to Lu), suggests that the heavy REEs are released during particulate organic carbon (POC) degradation and are subsequently chelated by DOC. REE concentrations are greater at Site U1325, a site where shorter residence times of POC in sulfate-bearing redox zones may enhance REE burial efficiency within sulfidic and methanogenic sediment zones where REE release ensues. Cross-plots of La concentrations versus Cl, Li and Sr delineate a distinct field for the deep fluids (z > 75 mbsf) at Site U1329, and indicate the presence of a fluid not observed at the other sites drilled on the Cascadia margin. Changes in REE patterns, the presence of a positive Eu anomaly, and other available geochemical data for this site suggest a complex hydrology and possible interaction with the igneous Crescent Terrane, located east of the drilled transect.
Resumo:
New geochemical data on serpentinite muds and metamorphic clasts recovered during Ocean Drilling Program Legs 195 (Holes 1200A-1200E) and 125 (Holes 778A and 779A) provide insights into the proportions of rock types of various sources that compose the serpentinite mudflows and the fluid-rock interactions that predominate in these muds. We interpret the metamorphic rock fragments as derivatives of mostly metamorphosed mafic rocks from the descending Pacific oceanic crust. Based on their mid-ocean-ridge basalt (MORB)-like Al2O3, TiO2, CaO, Si/Mg, and rare earth element (REE) systematics, these metamorphic rocks are classified as metabasalts/metagabbros and, therefore, ~30-km depths represent an active subduction zone setting. The serpentinite muds from Holes 1200A and 1200E have slightly lower REE when compared to Hole 1200D, but overall the REE abundance levels range between 0.1-1 x chondrite (CI) levels. The chondrite-normalized patterns have [La/Sm]N ~ 2.3 and [Sm/Yb]N ~ 2. With the exception of one sample, the analyzed metamorphic clasts show flat to slightly depleted light REE patterns with 1.0-15 x CI levels, resembling MORBs. Visually, ~6 vol% of the serpentinized muds are composed of 'exotic' materials (metamorphic clasts [schists]). Our mixing calculations confirm this result and show that the serpentinite muds are produced by additions of ~5% metamafic materials (with flat and up to 10 x CI REE levels) to serpentinized peridotite clast material (with very low REE abundances and U-shaped chondrite-normalized patterns). The preferential incorporation of B, Cs, Rb, Li, As, Sb, and Ba into the structure of H2O-bearing sheet silicates (different than serpentine) in the Leg 125 and Leg 195 metamorphic clasts (chlorite, amphibole, and micas) have little effect on the overall fluid-mobile element (FME) enrichments in the serpentinite muds (average B = ~13 ppm; average Cs = ~0.05 ppm; average As = ~1.25 ppm). The extent of FME enrichment in the serpentinized muds is similar to that described for the serpentinized peridotites, both recording interaction with fluids very rich in B, Cs, and As originating from the subducting Pacific slab.
Resumo:
Bulk chemistry and trace elements data were measured in 72 samples, selected from 5 basement sections, which have been recovered by Leg 60 drilling (Sites 453, 454, 456, 458, and 459). According to analytical results a metagabbro- metabasalt breccia, deposited about 5 Ma at the westernmost flank of the Mariana Trough (Site 453), was derived from an island arc source. Basalts from the Mariana Trough (Sites 454 and 456) are similar in many respects to midoceanic ridge basalts (MORB). Yet rocks of unusual geochemistry, reflecting the possible influence of arc volcanism, were found among the pillow lavas at the easternmost trough (Site 456). The acoustic basement in the Mariana fore-arc region was formed by submarine eruptions of arc tholeiites (Sites 458 and 459) and peculiar high-MgO andesites related to the boninite suite.
Resumo:
Volcaniclastic sediments of North Aoba Basin (Vanuatu) recovered during Ocean Drilling Program (ODP) Leg 134 show a mineralogical and chemical overprint of low grade hydrothermal alteration superimposed on the primary magmatic source compositions. The purpose of this study was to identify authigenic mineral phases incorporated in the volcaniclastic sediments, to distinguish authigenic chemical and mineralogical signals from the original volcaniclastic mineralogical and chemical compositions, and to determine the mechanism of authigenic minerals formation. Mineralogical, micro-chemical and bulk chemical analyses were utilized to identify and characterize authigenic phases and determine the original unaltered ash compositions. 117 volcaniclastic sediment samples from North Aoba Basin Sites 832 and 833 were analyzed. Primary volcaniclastic materials accumulated in North Aoba Basin can be divided into three types. The older basin-filling sequences show three different magmatic trends: high K, calc-alkaline, and low K series. The most recent accumulations are rhyodacitic composition and can be attributed to Santa Maria or Aoba volcanic emissions. Original depositional porosity of volcaniclastic sediments is an important factor in influencing distribution of authigenic phases. Finer-grained units are less altered and retain a bulk mineralogical and chemical composition close to the original pyroclastic rock composition. Coarser grained units (microbreccia and sandstones) are the major hosts of authigenic minerals. At both sites, authigenic minerals (including zeolites, clay minerals, Mg-carbonates, and quartz) exhibit complex zonation with depth that crosses original ash depositional boundaries and stratigraphic limits. The zeolite minerals phillipsite and analcime are ubiquitous throughout the altered intervals. At Site 832, the first zeolite minerals (phillipsite) occur in Pleistocene deposits as shallow as 146 meters below seafloor (mbsf). At Site 833 the first zeolite minerals (analcime) occur in Pleistocene deposits as shallow as 224 mbsf. The assemblage phillipsite + analcime + chabazite appears at 635 mbsf (Site 832) and at 376 mbsf (Site 833). Phillipsite + analcime + chabazite + thomsonite + heulandite are observed between 443 and 732 mbsf at Site 833. Thomsonite is no longer observed below 732 mbsf at Site 833. Heulandite is present to the base of the sections cored. The zeolite assemblages are associated with authigenic clay minerals (nontronite and saponite), calcite, and quartz. Chlorite is noticeable at Site 832 as deep as 851 mbsf. Zeolite zones are present but are less well defined at Site 832. Dolomite and rare magnesite are present below 940 m at Site 832. The coarse-grained authigenic mineral host intervals exhibit geochemical signatures that can be attributed to low grade hydrothermal alteration. The altered intervals show evidence of K2O, CaO, and rare earth elements mobilization. When compared to fine-grained, unaltered units, and to Santa Maria Island volcanics rocks, the altered zones are relatively depleted in rare earth elements, with light rare earth elements-heavy rare earth elements fractionation. Drilling at Site 833 penetrated a sill complex below 840 m. No sill was encountered at Site 832. Complex zonation of zeolite facies, authigenic smectites, carbonates and quartz, and associated geochemical signatures are present at both sites. The mineralogical and chemical alteration overprint is most pronounced in the deeper sections at Site 832. Based on mineralogical and chemical evidence at two locations less than 50 km apart, there is vertical and lateral variation in alteration of the volcaniclastic sediments of North Aoba Basin. The alteration observed may be activated by sill intrusion and associated expulsion of heated fluids into intervals of greater porosity. Such spatial variation in alteration could be attributed to the evolution of the basin axis associated with subduction processes along the New Hebrides Trench.
Resumo:
Measurements of 87Sr/86Sr ratios of interstitial waters from leg 25, site 245 and leg 38, site 336 of the Deep Sea Drilling Project show that the enrichment of Sr[2+] with depth is caused both by the alteration of volcanic material and by the introduction of strontium derived from calcium carbonate. 87Sr/86 Sr ratios range from 0.70913 to 0.70794 at site 245 and from 0.70916 to 0.70694 at site 336. The low ratios compared with contemporaneous seawater reflect the release of Sr from a volcanic source having, according to material-balance calculations, a 87Sr/86 Sr ratio of about 0.7034 at site 336. At this site the source appears to be volcanic ash and not basaltic basement which acts as a sink for Sr[2+] during in situ low-temperature weathering. The volcanic contribution to the strontium enrichment in the basal interstitial waters varies from <10% at site 245 to >50% at site 336. The remaining Sr[2+] is derived from Sr-rich biogenic carbonate during diagenetic recrystallization to form Sr-poor calcite.
Resumo:
Changes in the source of intermediate waters to the southern California margin may have caused variations in seafloor oxygen levels on stadial-interstadial time scales. We test this hypothesis using the Nd isotopic composition of benthic foraminifera and fossil fish debris from ODP Sites 893 and 1017 to track the composition of intermediate waters across interstadials 8-14 (~37-52 ka) during Marine Isotope Stage 3. The epsilon-Nd values of waters bathing the seafloor at Site 893 were typically ~-9 and those bathing Site 1017 were ~-7, both of which are significantly less radiogenic than waters that had originated in either the North Pacific or Southern Ocean (by the time such waters reached the southern California margin). Detrital silicate epsilon-Nd values of nearly -12 suggest that this offset toward lower epsilon-Nd values was likely caused by boundary scavenging that partially overprinted the water mass composition with local/regional fluvial Nd inputs. In spite of the evidence for boundary scavenging, the lack of systematic seawater Nd isotope changes on a stadial-interstadial basis suggests that the provenance of the intermediate waters did not change, and that the waters were derived from the Southern Ocean. Instead, changes in local/regional sea surface productivity may have caused the recorded changes in seafloor oxygenation.
Resumo:
Nd isotopes are useful tracers for paleoceanography due to the short Nd residence time in seawater and the large differences between the isotopic signatures of various geological reservoirs. Therefore, ?Nd variations reflect the geological history of individual oceanic basins. Using a differential dissolution technique, which extracts Nd isotopes of seawater trapped in MnO2 coatings and carbonates in marine sediment, we measured almost two hundred samples from ODP Sites 758 and 757 in the Northern Bay of Bengal covering the last 4 Ma. For the first time, we have shown a covariation between epsilon-Nd and d18O over at least the last 800 ka. We also show that from 4 Ma to 2.6 Ma, epsilon-Nd is almost constant and starts to fluctuate at 2.6 Ma when northern glaciations increased. From 2.6 Ma to 1 Ma the fluctuation period is close to 40 ka while from 1 Ma to present it is dominantly 100 ka. We attribute these findings to mixing between Himalayan river water (that ultimately originates as Indian summer monsoon rain) and normal Bay of Bengal seawater. Previous studies on seawater, using epsilon-Nd, d18O analyzed on planktonic foraminifera and sedimentary data, can be integrated into this model. A simple quantitative binary mixing model suggests that the summer monsoon rain was more intense during interglacial than glacial periods. During last glacial episode, the monsoon trajectory was deviated to the east. At a large scale, the Indian monsoon is fully controlled by the variations in Northern Hemisphere climate but with a complex response function to this forcing. Our study clearly establishes the large potential of Nd isotope data to evaluate the hydrological river regime during the Quaternary and its relationship with climate fluctuations, particularly when the sediment archive is sampled close to sediment sources.
Resumo:
Two trenches off Japan were explored during DSDP Leg 87. One is the Nankai Trough and the other is the Japan Trench; Site 582 is located on the floor of the former and Site 584 is situated on the deep-sea terrace of the latter. Cores from Site 582 and 584 consist mainly of hemipelagic sediments and diatomaceous silts and mudstone, respectively. In this report we analyze the chemistry of the interstitial water and sediments, as well as the sediment mineralogy. Sulfate reduction is accompanied by the production of secondary pyrite, which is rich in the sediment at both sites. Dissolved Ca concentration is relatively low and changes only slightly at both sites, probably because of the formation of carbonate with high alkalinity. Concentrations of dissolved Mg decrease with depth at Site 584. The dissolved Mg depletion probably results from the formation of Mg-rich carbonate and/or ion exchange and reaction between interstitial water and clay minerals. Higher Si/Al values are due to biogenic opal in the sediments and roughly correlate with higher values of interstitial water SiO2. Increases in dissolved Li concentrations may be related to its release from clay minerals, to advection that results from dewatering, and/or to fluid transport.
Resumo:
Gas hydrate samples were recovered from four sites (Sites 994, 995, 996, and 997) along the crest of the Blake Ridge during Ocean Drilling Program (ODP) Leg 164. At Site 996, an area of active gas venting, pockmarks, and chemosynthetic communities, vein-like gas hydrate was recovered from less than 1 meter below seafloor (mbsf) and intermittently through the maximum cored depth of 63 mbsf. In contrast, massive gas hydrate, probably fault filling and/or stratigraphically controlled, was recovered from depths of 260 mbsf at Site 994, and from 331 mbsf at Site 997. Downhole-logging data, along with geochemical and core temperature profiles, indicate that gas hydrate at Sites 994, 995, and 997 occurs from about 180 to 450 mbsf and is dispersed in sediment as 5- to 30-m-thick zones of up to about 15% bulk volume gas hydrate. Selected gas hydrate samples were placed in a sealed chamber and allowed to dissociate. Evolved gas to water volumetric ratios measured on seven samples from Site 996 ranged from 20 to 143 mL gas/mL water to 154 mL gas/mL water in one sample from Site 994, and to 139 mL gas/mL water in one sample from Site 997, which can be compared to the theoretical maximum gas to water ratio of 216. These ratios are minimum gas/water ratios for gas hydrate because of partial dissociation during core recovery and potential contamination with pore waters. Nonetheless, the maximum measured volumetric ratio indicates that at least 71% of the cages in this gas hydrate were filled with gas molecules. When corrections for pore-water contamination are made, these volumetric ratios range from 29 to 204, suggesting that cages in some natural gas hydrate are nearly filled. Methane comprises the bulk of the evolved gas from all sites (98.4%-99.9% methane and 0%-1.5% CO2). Site 996 hydrate contained little CO2 (0%-0.56%). Ethane concentrations differed significantly from Site 996, where they ranged from 720 to 1010 parts per million by volume (ppmv), to Sites 994 and 997, which contained much less ethane (up to 86 ppmv). Up to 19 ppmv propane and other higher homologues were noted; however, these gases are likely contaminants derived from sediment in some hydrate samples. CO2 concentrations are less in gas hydrate than in the surrounding sediment, likely an artifact of core depressurization, which released CO2 derived from dissolved organic carbon (DIC) into sediment. The isotopic composition of methane from gas hydrate ranges from d13C of -62.5 per mil to -70.7 per mil and dD of -175 per mil to -200 per mil and is identical to the isotopic composition of methane from surrounding sediment. Methane of this isotopic composition is mainly microbial in origin and likely produced by bacterial reduction of bicarbonate. The hydrocarbon gases here are likely the products of early microbial diagenesis. The isotopic composition of CO2 from gas hydrate ranges from d13C of -5.7 per mil to -6.9 per mil, about 15 per mil lighter than CO2 derived from nearby sediment.