754 resultados para High strength steel


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vitamin D deficiency and insufficiency are now seen as a contemporary health problem in Australia with possible widespread health effects not limited to bone health1. Despite this, the Vitamin D status (measured as serum 25-hydroxyvitamin D (25(OH)D)) of ambulatory adults has been overlooked in this country. Serum 25(OH)D status is especially important among this group as studies have shown a link between Vitamin D and fall risk in older adults2. Limited data also exists on the contributions of sun exposure via ultraviolet radiation and dietary intake to serum 25(OH)D status in this population. The aims of this project were to assess the serum 25(OH)D status of a group of older ambulatory adults in South East Queensland, to assess the association between their serum 25(OH)D status and functional measures as possible indicators of fall risk, obtain data on the sources of Vitamin D in this population and assess whether this intake was related to serum 25(OH)D status and describe sun protection and exposure behaviors in this group and investigate whether a relationship existed between these and serum 25(OH)D status. The collection of this data assists in addressing key gaps identified in the literature with regard to this population group and their Vitamin D status in Australia. A representative convenience sample of participants (N=47) over 55 years of age was recruited for this cross-sectional, exploratory study which was undertaken in December 2007 in south-east Queensland (Brisbane and Sunshine coast). Participants were required to complete a sun exposure questionnaire in addition to a Calcium and Vitamin D food frequency questionnaire. Timed up and go and handgrip dynamometry tests were used to examine functional capacity. Serum 25(OH)D status and blood measures of Calcium, Phosphorus and Albumin were determined through blood tests. The Mean and Median serum 25-Hydroxyvitamin D (25(OH)D) for all participants in this study was 85.8nmol/L (Standard Deviation 29.7nmol/L) and 81.0nmol/L (Range 22-158nmol/L), respectively. Analysis at the bivariate level revealed a statistically significant relationship between serum 25(OH)D status and location, with participants living on the Sunshine Coast having a mean serum 25(OH)D status 21.3nmol/L higher than participants living in Brisbane (p=0.014). While at the descriptive level there was an apparent trend towards higher outdoor exposure and increasing levels of serum 25(OH)D, no statistically significant associations between the sun measures of outdoor exposure, sun protection behaviors and phenotypic characteristics and serum 25(OH)D status were observed. Intake of both Calcium and Vitamin D was low in this sample with sixty-eight (68%) of participants not meeting the Estimated Average Requirements (EAR) for Calcium (Median=771.0mg; Range=218.0-2616.0mg), while eighty-seven (87%) did not meet the Adequate Intake for Vitamin D (Median=4.46ug; Range=0.13-30.0ug). This raises the question of how realistic meeting the new Adequate Intakes for Vitamin D is, when there is such a low level of Vitamin D fortification in this country. However, participants meeting the Adequate Intake (AI) for Vitamin D were observed to have a significantly higher serum 25(OH)D status compared to those not meeting the AI for Vitamin D (p=0.036), showing that meeting the AI for Vitamin D may play a significant role in determining Vitamin D status in this population. By stratifying our data by categories of outdoor exposure time, a trend was observed between increased importance of Vitamin D dietary intake as a possible determinant of serum 25(OH)D status in participants with lower outdoor exposures. While a trend towards higher Timed Up and Go scores in participants with higher 25(OH) D status was seen, this was only significant for females (p=0.014). Handgrip strength showed statistically significant association with serum 25(OH)D status. The high serum 25(OH)D status in our sample almost certainly explains the limited relationship between functional measures and serum 25(OH)D. However, the observation of an association between slower Time Up and Go speeds, and lower serum 25(OH)D levels, even with a small sample size, is significant as slower Timed Up and Go speeds have been associated with increased fall risk in older adults3. Multivariable regression analysis revealed Location as the only significant determinant of serum 25(OH)D status at p=0.014, with trends (p=>0.1) for higher serum 25(OH)D being shown for participants that met the AI for Vitamin D and rated themselves as having a higher health status. The results of this exploratory study show that 93.6% of participants had adequate 25(OH)D status-possibly due to measurement being taken in the summer season and the convenience nature of the sample. However, many participants do not meet their dietary Calcium and Vitamin D requirements, which may indicate inadequate intake of these nutrients in older Australians and a higher risk of osteoporosis. The relationship between serum 25(OH)D and functional measures in this population also requires further study, especially in older adults displaying Vitamin D insufficiency or deficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cold-formed steel members have been widely used in residential, industrial and commercial buildings as primary load bearing structural elements and non-load bearing structural elements (partitions) due to their advantages such as higher strength to weight ratio over the other structural materials such as hot-rolled steel, timber and concrete. Cold-formed steel members are often made from thin steel sheets and hence they are more susceptible to various buckling modes. Generally short columns are susceptible to local or distortional buckling while long columns to flexural or flexural-torsional buckling. Fire safety design of building structures is an essential requirement as fire events can cause loss of property and lives. Therefore it is essential to understand the fire performance of light gauge cold-formed steel structures under fire conditions. The buckling behaviour of cold-formed steel compression members under fire conditions is not well investigated yet and hence there is a lack of knowledge on the fire performance of cold-formed steel compression members. Current cold-formed steel design standards do not provide adequate design guidelines for the fire design of cold-formed steel compression members. Therefore a research project based on extensive experimental and numerical studies was undertaken at the Queensland University of Technology to investigate the buckling behaviour of light gauge cold-formed steel compression members under simulated fire conditions. As the first phase of this research, a detailed review was undertaken on the mechanical properties of light gauge cold-formed steels at elevated temperatures and the most reliable predictive models for mechanical properties and stress-strain models based on detailed experimental investigations were identified. Their accuracy was verified experimentally by carrying out a series of tensile coupon tests at ambient and elevated temperatures. As the second phase of this research, local buckling behaviour was investigated based on the experimental and numerical investigations at ambient and elevated temperatures. First a series of 91 local buckling tests was carried out at ambient and elevated temperatures on lipped and unlipped channels made of G250-0.95, G550-0.95, G250-1.95 and G450-1.90 cold-formed steels. Suitable finite element models were then developed to simulate the experimental conditions. These models were converted to ideal finite element models to undertake detailed parametric study. Finally all the ultimate load capacity results for local buckling were compared with the available design methods based on AS/NZS 4600, BS 5950 Part 5, Eurocode 3 Part 1.2 and the direct strength method (DSM), and suitable recommendations were made for the fire design of cold-formed steel compression members subject to local buckling. As the third phase of this research, flexural-torsional buckling behaviour was investigated experimentally and numerically. Two series of 39 flexural-torsional buckling tests were undertaken at ambient and elevated temperatures. The first series consisted 2800 mm long columns of G550-0.95, G250-1.95 and G450-1.90 cold-formed steel lipped channel columns while the second series contained 1800 mm long lipped channel columns of the same steel thickness and strength grades. All the experimental tests were simulated using a suitable finite element model, and the same model was used in a detailed parametric study following validation. Based on the comparison of results from the experimental and parametric studies with the available design methods, suitable design recommendations were made. This thesis presents a detailed description of the experimental and numerical studies undertaken on the mechanical properties and the local and flexural-torsional bucking behaviour of cold-formed steel compression member at ambient and elevated temperatures. It also describes the currently available ambient temperature design methods and their accuracy when used for fire design with appropriately reduced mechanical properties at elevated temperatures. Available fire design methods are also included and their accuracy in predicting the ultimate load capacity at elevated temperatures was investigated. This research has shown that the current ambient temperature design methods are capable of predicting the local and flexural-torsional buckling capacities of cold-formed steel compression members at elevated temperatures with the use of reduced mechanical properties. However, the elevated temperature design method in Eurocode 3 Part 1.2 is overly conservative and hence unsuitable, particularly in the case of flexural-torsional buckling at elevated temperatures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The flexural capacity of of a new cold-formed hollow flange channel section known as LiteSteel beam (LSB) is limited by lateral distortional buckling for intermediate spans, which is characterised by simultaneous lateral deflection, twist and web distortion. Recent research has developed suitable design rules for the member capacity of LSBs. However, they are limited to a uniform moment distribution that rarely exists in practice. Many steel design codes have adopted equivalent uniform moment distribution factors to accommodate the effect of non-uniform moment distributions in design. But they were derived mostly based on the data for conventional hot-rolled, doubly symmetric I-beams subject to lateral torsional buckling. The effect of moment distribution for LSBs, and the suitability of the current steel design code rules to include this effect for LSBs are not yet known. This paper presents the details of a research study based on finite element analyses of the lateral buckling strength of simply supported LSBs subject to moment gradient effects. It also presents the details of a number of LSB lateral buckling experiments undertaken to validate the results of finite element analyses. Finally, it discusses the suitability of the current design methods, and provides design recommendations for simply supported LSBs subject to moment gradient effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the details of experimental and numerical studies on the shear behaviour of a recently developed, cold-formed steel beam known as LiteSteel Beam (LSB). The LSB sections are produced by a patented manufacturing process involving simultaneous cold-forming and electric resistance welding. It has a unique shape of a channel beam with two rectangular hollow flanges. Recent research has demonstrated the presence of increased shear capacity of LSBs due to the additional fixity along the web to flange juncture, but the current design rules ignore this effect. Therefore they were modified by including a higher elastic shear buckling coefficient. In the present study, the ultimate shear capacity results obtained from the experimental and numerical studies of 10 different LSB sections were compared with the modified shear capacity design rules. It was found that they are still conservative as they ignore the presence of post-buckling strength. Therefore the design rules were further modified to include the available post-buckling strength. Suitable design rules were also developed under the direct strength method format. This paper presents the details of this study and the results including the final design rules for the shear capacity of LSBs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the details of an investigation on the shear behaviour of a recently developed, cold-formed steel beam known as LiteSteel Beam (LSB).The LSB section has a unique shape of a channel beam with two rectangular hollow flanges and is produced by a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. In the present investigation, a series of numerical analyses based on three-dimensional finite element modeling and an experimental study were carried out to investigate the shear behaviour of 10 different LSB sections. It was found that the current design rules in cold-formed steel structures design codes are very conservative for the shear design of LiteSteel beams. Significant improvements to web shear buckling occurred due to the presence of rectangular hollow flanges while considerable post-buckling strength was also observed. Therefore the design rules were further modified to include the available post-buckling strength. Suitable design rules were also developed under the direct strength method format. This paper presents the details of this investigation and the results including the final design rules for the shear capacity of LSBs. It also presents new shear strength formulae for lipped channel beams based on the current design equations for shear strength given in AISI (2007) using the same approach used for LSBs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cold-formed steel members are extensively used in the building construction industry, especially in residential, commercial and industrial buildings. In recent times, fire safety has become important in structural design due to increased fire damage to properties and loss of lives. However, past research into the fire performance of cold-formed steel members has been limited, and was confined to compression members. Therefore a research project was undertaken to investigate the structural behaviour of compact cold-formed steel lipped channel beams subject to inelastic local buckling and yielding, and lateral-torsional buckling effects under simulated fire conditions and associated section and member moment capacities. In the first phase of this research, an experimental study based on tensile coupon tests was undertaken to obtain the mechanical properties of elastic modulus and yield strength and the stress-strain relationship of cold-formed steels at uniform ambient and elevated temperatures up to 700oC. The mechanical properties deteriorated with increasing temperature and are likely to reduce the strength of cold-formed beams under fire conditions. Predictive equations were developed for yield strength and elastic modulus reduction factors while a modification was proposed for the stressstrain model at elevated temperatures. These results were used in the numerical modelling phases investigating the section and member moment capacities. The second phase of this research involved the development and validation of two finite element models to simulate the behaviour of compact cold-formed steel lipped channel beams subject to local buckling and yielding, and lateral-torsional buckling effects. Both models were first validated for elastic buckling. Lateral-torsional buckling tests of compact lipped channel beams were conducted at ambient temperature in order to validate the finite element model in predicting the non-linear ultimate strength behaviour. The results from this experimental study did not agree well with those from the developed experimental finite element model due to some unavoidable problems with testing. However, it highlighted the importance of magnitude and direction of initial geometric imperfection as well as the failure direction, and thus led to further enhancement of the finite element model. The finite element model for lateral-torsional buckling was then validated using the available experimental and numerical ultimate moment capacity results from past research. The third phase based on the validated finite element models included detailed parametric studies of section and member moment capacities of compact lipped channel beams at ambient temperature, and provided the basis for similar studies at elevated temperatures. The results showed the existence of inelastic reserve capacity for compact cold-formed steel beams at ambient temperature. However, full plastic capacity was not achieved by the mono-symmetric cold-formed steel beams. Suitable recommendations were made in relation to the accuracy and suitability of current design rules for section moment capacity. Comparison of member capacity results from finite element analyses with current design rules showed that they do not give accurate predictions of lateral-torsional buckling capacities at ambient temperature and hence new design rules were developed. The fourth phase of this research investigated the section and member moment capacities of compact lipped channel beams at uniform elevated temperatures based on detailed parametric studies using the validated finite element models. The results showed the existence of inelastic reserve capacity at elevated temperatures. Suitable recommendations were made in relation to the accuracy and suitability of current design rules for section moment capacity in fire design codes, ambient temperature design codes as well as those proposed by other researchers. The results showed that lateral-torsional buckling capacities are dependent on the ratio of yield strength and elasticity modulus reduction factors and the level of non-linearity in the stress-strain curves at elevated temperatures in addition to the temperature. Current design rules do not include the effects of non-linear stress-strain relationship and therefore their predictions were found to be inaccurate. Therefore a new design rule that uses a nonlinearity factor, which is defined as the ratio of the limit of proportionality to the yield stress at a given temperature, was developed for cold-formed steel beams subject to lateral-torsional buckling at elevated temperatures. This thesis presents the details and results of the experimental and numerical studies conducted in this research including a comparison of results with predictions using available design rules. It also presents the recommendations made regarding the accuracy of current design rules as well as the new developed design rules for coldformed steel beams both at ambient and elevated temperatures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the details of an experimental study on the shear behaviour and strength of a recently developed, cold-formed steel hollow flange channel beam known as LiteSteel Beam (LSB). The new LSB sections with rectangular hollow flanges are produced using a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. They are commonly used as flexural members in buildings. However, no research has been undertaken on the shear behaviour of LSBs. Therefore a detailed experimental study involving 36 shear tests was undertaken to investigate the shear behaviour of 10 different LSB sections. Simply supported test specimens of LSBs with aspect ratios of 1.0 and 1.5 were loaded at midspan until failure using both single and back to back LSB arrangements. Test specimens were chosen such that all three types of shear failure (shear yielding, inelastic and elastic shear buckling) occurred in the tests. Comparison of experimental results with corresponding predictions from the current Australian and North American cold-formed steel design rules showed that the current design rules are very conservative for the shear design of LSBs. Significant improvements to web shear buckling occurred due to the presence of rectangular hollow flanges while considerable post-buckling strength was also observed. Appropriate improvements have been proposed for the shear strength of LSBs based on the design equations in the North American Specification. This paper presents the details of this experimental study and the results. When reduced height web side plates or only one web side plate was used, the shear capacity of LSB was reduced. Details of these tests and the results are also presented in this paper. Keywords: LiteSteel beam, Shear strength, Shear tests, Cold-formed steel structures, Direct strength method, Slender web, Hollow flanges.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A teaching and learning development project is currently under way at Queens-land University of Technology to develop advanced technology videotapes for use with the delivery of structural engineering courses. These tapes consist of integrated computer and laboratory simulations of important concepts, and behaviour of structures and their components for a number of structural engineering subjects. They will be used as part of the regular lectures and thus will not only improve the quality of lectures and learning environment, but also will be able to replace the ever-dwindling laboratory teaching in these subjects. The use of these videotapes, developed using advanced computer graphics, data visualization and video technologies, will enrich the learning process of the current diverse engineering student body. This paper presents the details of this new method, the methodology used, the results and evaluation in relation to one of the structural engineering subjects, steel structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: During hospitalisation older people often experience functional decline which impacts on their future independence. The objective of this study was to evaluate a multifaceted transitional care intervention including home-based exercise strategies for at-risk older people on functional status, independence in activities of daily living, and walking ability. Methods: A randomised controlled trial was undertaken in a metropolitan hospital in Australia with 128 patients (64 intervention, 64 control) aged over 65 years with an acute medical admission and at least one risk factor for hospital readmission. The intervention group received an individually tailored program for exercise and follow-up care which was commenced in hospital and included regular visits in hospital by a physiotherapist and a Registered Nurse, a home visit following discharge, and regular telephone follow-up for 24 weeks following discharge. The program was designed to improve health promoting behaviours, strength, stability, endurance and mobility. Data were collected at baseline, then 4, 12 and 24 weeks following discharge using the Index of Activities of Daily Living (ADL), Instrumental Index of Activities of Daily Living (IADL), and the Walking Impairment Questionnaire (Modified). Results: Significant improvements were found in the intervention group in IADL scores (p<.001), ADL scores (p<.001), and WIQ scale scores (p<.001) in comparison to the control group. The greatest improvements were found in the first four weeks following discharge. Conclusions: Early introduction of a transitional model of care incorporating a tailored exercise program and regular telephone follow-up for hospitalised at-risk older adults can improve independence and functional ability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the past decade, a significant amount of research has been conducted internationally with the aim of developing, implementing, and verifying "advanced analysis" methods suitable for non-linear analysis and design of steel frame structures. Application of these methods permits comprehensive assessment of the actual failure modes and ultimate strengths of structural systems in practical design situations, without resort to simplified elastic methods of analysis and semi-empirical specification equations. Advanced analysis has the potential to extend the creativity of structural engineers and simplify the design process, while ensuring greater economy and more uniform safety with respect to the ultimate limit state. The application of advanced analysis methods has previously been restricted to steel frames comprising only members with compact cross-sections that are not subject to the effects of local buckling. This precluded the use of advanced analysis from the design of steel frames comprising a significant proportion of the most commonly used Australian sections, which are non-compact and subject to the effects of local buckling. This thesis contains a detailed description of research conducted over the past three years in an attempt to extend the scope of advanced analysis by developing methods that include the effects of local buckling in a non-linear analysis formulation, suitable for practical design of steel frames comprising non-compact sections. Two alternative concentrated plasticity formulations are presented in this thesis: the refined plastic hinge method and the pseudo plastic zone method. Both methods implicitly account for the effects of gradual cross-sectional yielding, longitudinal spread of plasticity, initial geometric imperfections, residual stresses, and local buckling. The accuracy and precision of the methods for the analysis of steel frames comprising non-compact sections has been established by comparison with a comprehensive range of analytical benchmark frame solutions. Both the refined plastic hinge and pseudo plastic zone methods are more accurate and precise than the conventional individual member design methods based on elastic analysis and specification equations. For example, the pseudo plastic zone method predicts the ultimate strength of the analytical benchmark frames with an average conservative error of less than one percent, and has an acceptable maximum unconservati_ve error of less than five percent. The pseudo plastic zone model can allow the design capacity to be increased by up to 30 percent for simple frames, mainly due to the consideration of inelastic redistribution. The benefits may be even more significant for complex frames with significant redundancy, which provides greater scope for inelastic redistribution. The analytical benchmark frame solutions were obtained using a distributed plasticity shell finite element model. A detailed description of this model and the results of all the 120 benchmark analyses are provided. The model explicitly accounts for the effects of gradual cross-sectional yielding, longitudinal spread of plasticity, initial geometric imperfections, residual stresses, and local buckling. Its accuracy was verified by comparison with a variety of analytical solutions and the results of three large-scale experimental tests of steel frames comprising non-compact sections. A description of the experimental method and test results is also provided.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

LiteSteel Beam (LSB) is a new cold-formed steel beam produced by OneSteel Australian Tube Mills. The new beam is effectively a channel section with two rectangular hollow flanges and a slender web, and is manufactured using a combined cold-forming and electric resistance welding process. OneSteel Australian Tube Mills is promoting the use of LSBs as flexural members in a range of applications, such as floor bearers. When LSBs are used as back to back built-up sections, they are likely to improve their moment capacity and thus extend their applications further. However, the structural behaviour of built-up beams is not well understood. Many steel design codes include guidelines for connecting two channels to form a built-up I-section including the required longitudinal spacing of connections. But these rules were found to be inadequate in some applications. Currently the safe spans of builtup beams are determined based on twice the moment capacity of a single section. Research has shown that these guidelines are conservative. Therefore large scale lateral buckling tests and advanced numerical analyses were undertaken to investigate the flexural behaviour of back to back LSBs connected by fasteners (bolts) at various longitudinal spacings under uniform moment conditions. In this research an experimental investigation was first undertaken to study the flexural behaviour of back to back LSBs including its buckling characteristics. This experimental study included tensile coupon tests, initial geometric imperfection measurements and lateral buckling tests. The initial geometric imperfection measurements taken on several back to back LSB specimens showed that the back to back bolting process is not likely to alter the imperfections, and the measured imperfections are well below the fabrication tolerance limits. Twelve large scale lateral buckling tests were conducted to investigate the behaviour of back to back built-up LSBs with various longitudinal fastener spacings under uniform moment conditions. Tests also included two single LSB specimens. Test results showed that the back to back LSBs gave higher moment capacities in comparison with single LSBs, and the fastener spacing influenced the ultimate moment capacities. As the fastener spacing was reduced the ultimate moment capacities of back to back LSBs increased. Finite element models of back to back LSBs with varying fastener spacings were then developed to conduct a detailed parametric study on the flexural behaviour of back to back built-up LSBs. Two finite element models were developed, namely experimental and ideal finite element models. The models included the complex contact behaviour between LSB web elements and intermittently fastened bolted connections along the web elements. They were validated by comparing their results with experimental results and numerical results obtained from an established buckling analysis program called THIN-WALL. These comparisons showed that the developed models could accurately predict both the elastic lateral distortional buckling moments and the non-linear ultimate moment capacities of back to back LSBs. Therefore the ideal finite element models incorporating ideal simply supported boundary conditions and uniform moment conditions were used in a detailed parametric study on the flexural behaviour of back to back LSB members. In the detailed parametric study, both elastic buckling and nonlinear analyses of back to back LSBs were conducted for 13 LSB sections with varying spans and fastener spacings. Finite element analysis results confirmed that the current design rules in AS/NZS 4600 (SA, 2005) are very conservative while the new design rules developed by Anapayan and Mahendran (2009a) for single LSB members were also found to be conservative. Thus new member capacity design rules were developed for back to back LSB members as a function of non-dimensional member slenderness. New empirical equations were also developed to aid in the calculation of elastic lateral distortional buckling moments of intermittently fastened back to back LSBs. Design guidelines were developed for the maximum fastener spacing of back to back LSBs in order to optimise the use of fasteners. A closer fastener spacing of span/6 was recommended for intermediate spans and some long spans where the influence of fastener spacing was found to be high. In the last phase of this research, a detailed investigation was conducted to investigate the potential use of different types of connections and stiffeners in improving the flexural strength of back to back LSB members. It was found that using transverse web stiffeners was the most cost-effective and simple strengthening method. It is recommended that web stiffeners are used at the supports and every third points within the span, and their thickness is in the range of 3 to 5 mm depending on the size of LSB section. The use of web stiffeners eliminated most of the lateral distortional buckling effects and hence improved the ultimate moment capacities. A suitable design equation was developed to calculate the elastic lateral buckling moments of back to back LSBs with the above recommended web stiffener configuration while the same design rules developed for unstiffened back to back LSBs were recommended to calculate the ultimate moment capacities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT Twelve beam-to-column connections between cold-formed steel sections consisting of three beam depths and four connection types were tested in isolation to investigate their behavior based on strength, stiffness and ductility. Resulting moment-rotation curves indicate that the tested connections are efficient moment connections where moment capacities ranged from about 65% to 100% of the connected beam capac-ity. With a moment capacity of greater than 80% of connected beam member capacity, some of the connec-tions can be regarded as full strength connections. Connections also possessed sufficient ductility with rota-tions of 20 mRad at failure although some connections were too ductile with rotations in excess of 30 mRad. Generally, most of the connections possess the strength and ductility to be considered as partial strength con-nections. The ultimate failures of almost all of the connections were due to local buckling of the compression web and flange elements of the beam closest to the connection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

LiteSteel Beam (LSB) is a new cold-formed steel beam produced by OneSteel Australian Tube Mills (OATM). The new beam is effectively a channel section with two rectangular hollow flanges and a slender web, and is manufactured using patented dual electric resistance welding and automated roll-forming technologies. OATM is promoting the use of LSBs as flexural members in residential construction. When LSBs are used as back to back built-up sections, they are likely to improve their moment capacity. However, the research project conducted on the flexural behaviour of back to back built-up LSBs showed that the detrimental effects of lateral distortional buckling in single LSB members appear to remain with back to back built-up LSB members. The ultimate moment capacity of back to back LSB member is also affected by lateral distortional buckling failure. Therefore an investigation was conducted with an aim to develop suitable strength improvement methods, which are likely to mitigate lateral distortional buckling effects and hence improve the flexural strengths of back to back LSB members. This paper presents the details of this investigation, the results and recommendations for the most suitable and cost-effective method, which significantly improves the moment capacities of back to back LSB members.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the details of numerical studies on the shear strength of a recently devel-oped, cold-formed steel channel beam known as LiteSteel Beam (LSB) with web openings. The LSB sections are commonly used as floor joists and bearers in residential, industrial and commercial buildings. In these ap-plications they often include web openings for the purpose of locating services. This has raised concerns over the shear capacity of LSB floor joists and bearers. Therefore experimental and numerical studies were under-taken to investigate the shear behavior and strength of LSBs with web openings. In this research, finite ele-ment models of LSBs with web openings in shear were developed to simulate the shear behavior of LSBs. It was found that currently available design equations are conservative or unconservative for the shear design of LSBs with web openings. Improved design equations have been proposed for the shear capacity of LSBs with web openings based on both experimental and numerical study results.