919 resultados para High leakage rate
Resumo:
AIMS: The experience of using radiofrequency ablation (RFA) for the treatment of arrhythmias in children and adolescents is still limited. This study aimed to review the most recent results of RF ablation in children and adolescents in a highly experienced centre with access to both conventional techniques and non-fluoroscopic electroanatomic mapping (CARTO). METHODS AND RESULTS: A total of 154 consecutive patients younger than 19 years treated with RFA during the period 2000-04 were included. Numbers (%) or median (quartiles) are reported. Age was 15 (12-17) years, 70 (45%) were males. Five patients (3%) had congenital heart disease. RFA was successful in 147/154 patients (95%). Arrhythmia recurrence occurred in 11 patients (7%). Procedure time was 55 (35-90) min and fluoroscopy time was 8.8 (4-19) min. Number of RF applications was 4 (2-10) and number of RF applications >20 s was 2 (1-7). One patient (0.7%) had complicating high-grade atrioventricular block. CARTO was used in 18 RF ablation procedures (11%) performed in 15 patients. CONCLUSION: RF ablation can be undertaken in children and adolescents with a high success rate, few recurrences and complications, very short procedure times, and acceptable fluoroscopy times. Non-fluoroscopic electroanatomic mapping is helpful in selected patients.
Resumo:
OBJECTIVES: To demonstrate the safety and feasibility of a new concept for CTO recanalization using a controlled antegrade and retrograde subintimal tracking technique (CART technique). BACKGROUND: A successful percutaneous recanalization of chronic coronary occlusions results in improved survival, as well as enhanced left ventricular function, reduction in angina, and improved exercise tolerance. However, successful recanalization of CTOs is still not optimal, and needs further improvements. METHODS: Ten patients with a CTO underwent the CART procedure. This technique combines the simultaneous use of the antegrade and retrograde approaches. A subintimal dissection is created antegradely and retrogradely, which allows the operator to limit the extension of the subintimal dissection in the CTO portion. A retrograde approach means that the occlusion site is approached in a retrograde fashion through the best collateral channel from any other patent coronary artery. RESULTS: The occlusion site was located in the RCA in 9 patients, and in the LAD in 1 patient. CTO duration varied from 7 to 84 months. Vessel recanalization was achieved in all patients. In all cases, the subintimal dissection was limited to the CTO region. No complications occurred in the collateral channel used for the retrograde approach. There were no in-hospital major adverse cardiac events. CONCLUSIONS: The CART technique is feasible, safe, and has a high success rate.
Resumo:
OBJECTIVES: The objectives of this systematic review were to assess the 5-year survival of resin-bonded bridges (RBBs) and to describe the incidence of technical and biological complications. METHODS: An electronic Medline search complemented by manual searching was conducted to identify prospective and retrospective cohort studies on RBBs with a mean follow-up time of at least 5 years. Patients had to have been examined clinically at the follow-up visit. Assessment of the identified studies and data extraction were performed independently by two reviewers. Failure and complication rates were analyzed using random-effects Poissons regression models to obtain summary estimates of 5-year proportions. RESULTS: The search provided 6110 titles and 214 abstracts. Full-text analysis was performed for 93 articles, resulting in 17 studies that met the inclusion criteria. Meta-analysis of these studies indicated an estimated survival of RBBs of 87.7% (95% confidence interval (CI): 81.6-91.9%) after 5 years. The most frequent complication was debonding (loss of retention), which occurred in 19.2% (95% CI: 13.8-26.3%) of RBBs over an observation period of 5 years. The annual debonding rate for RBBs placed on posterior teeth (5.03%) tended to be higher than that for anterior-placed RBBs (3.05%). This difference, however, did not reach statistical significance (P=0.157). Biological complications, like caries on abutments and RBBs lost due to periodontitis, occurred in 1.5% of abutments and 2.1% of RBBs, respectively. CONCLUSION: Despite the high survival rate of RBBs, technical complications like debonding are frequent. This in turn means that a substantial amount of extra chair time may be needed following the incorporation of RBBs. There is thus an urgent need for studies with a follow-up time of 10 years or more, to evaluate the long-term outcomes.
Resumo:
Five diagnostic techniques performed on skin biopsies (shoulder region) and/or serum were compared for detection of bovine viral diarrhea virus infection in 224 calves 0-3 months of age, 23 calves older than 3 months but younger than 7 months, and 11 cattle older than 7 months. The diagnostic methods used were immunohistochemistry (IHC), 2 commercial antigen ELISAs, 1 commercial antibody ELISA, and real-time RT-PCR. Results of 249 out of 258 skin and serum samples were identical and correlated within the 3 antigen detection methods and the real-time RT-PCR used. Twenty-six of these 249 samples were BVDV-positive with all antigen detection methods and the real-time RT-PCR. Nine out of 258 samples yielding discordant results were additionally examined by RT-PCR, RT-PCR Reamplification (ReA), and antigen ELISA I on serum and by immunohistochemistry on formalin fixed and paraffin-embedded skin biopsies. Virus isolation and genotyping was performed as well on these discordant samples. In 3 cases, transiently infected animals were identified. Two samples positive by real-time RT-PCR were interpreted as false positive and were ascribed to cross-contamination. The antigen ELISA II failed to detect 2 BVDV-positive calves due to the presence of maternal antibodies; the cause of 2 false-positive cases in this ELISA remained undetermined. Only persistently infected animals were identified in skin samples by IHC or antigen ELISA I. The 3 antigen detection methods and the real-time RT-PCR used in parallel had a high correlation rate (96.5%) and similar sensitivity and specificity values.
Resumo:
We induced, as a precondition for a pancreas transplant, insulin-dependent diabetes mellitus in 67 Yorkshire Landrace pigs by administering streptozotocin. A dosage of 150 mg/kg body weight gave rise to a long-lasting diabetes mellitus that persisted with time (follow-up period: 26 weeks). Consecutive measurements of serum glucose and plasma insulin, before and up to 30 hours after administering streptozotocin, revealed triphasic behavior: initial hyperglycemia (1st to 3rd hour), pronounced hypoglycemia (12th to 18th hour), then hyperglycemia (22nd hour on). IVGTTs done 1 to 7 days after administering streptozotocin revealed a reduction of the K-value (glucose disappearance rate) from 0.3 (day 2) to 0.07 (day 4). Immunohistochemical studies revealed a complete loss of all beta-cells, concomitantly with a relative increase in glucagon- and somatostatin-positive cells. We also observed a complete loss of pp (pancreatic polypeptide)-positive cells. Diabetes induced by streptozotocin at 150 mg/kg body weight is complete and permanent; our mortality rate was 0%. Given the high morbidity rate after pancreatectomy, streptozotocin should be the method of choice for inducing diabetes mellitus in pigs.
Resumo:
BACKGROUND AND PURPOSE: For selected stroke patients, intra-arterial thrombolysis (IAT) has been shown to be an effective treatment option. However, knowledge of safety and efficacy of IAT in patients with acute stroke as a complication of arterial catheter interventions is limited. METHODS: We analyzed clinical radiological findings and functional outcomes in consecutive patients 3 months after treatment with IAT for peri-procedural strokes occurring during neuroendovascular or cardiac catheter interventions. To measure outcome, the modified Rankin scale score was used. RESULTS: Of a total of 432 patients treated with IAT, 12 (4 women and 8 men; mean age, 60 years) were treated because of an ischemic stroke after a neuro-endovascular procedure (n=6) or coronary angiography (n=6). The median baseline National Institutes of Health Stroke Scale score was 15. Recanalization was complete (thrombolysis in myocardial infarction grade 3) in 6, partial (thrombolysis in myocardial infarction 2) in 5, and minimal (thrombolysis in myocardial infarction 1) in 1. Nine patients (75%) had a favorable outcome (modified Rankin scale score, 0 to 2), and 3 had a poor outcome (modified Rankin scale score, 3 or 4). All patients with complete recanalization had a favorable outcome, whereas only 3 of 6 patients with partial or minimal recanalization (P=0.18) had a favorable outcome. Follow-up brain imaging was normal in 2 and showed new ischemic lesions in 10 patients. Two patients (17%) had a symptomatic intracerebral hemorrhage. CONCLUSIONS: In acute stroke attributable to arterial catheter interventions, IAT is feasible and has the potential to improve outcome in these patients. A high recanalization rate could be achieved.
Resumo:
QUESTIONS UNDER STUDY: The risk of transfusion-transmitted HBV remains significant in Switzerland, where routine screening for hepatitis B virus (HBV) in blood donations relies solely on serological hepatitis B surface antigen (HBsAg) testing. This study was designed to determine the prevalence of anti-hepatitis B core (anti-HBc) and HBV nucleic acid testing (NAT) positive donations in two different Swiss donor populations, to help in deciding whether supplemental testing may bring additional safety to blood products. METHODS: In a first population of donors, 18143 consecutive donations were screened initially for HBsAg, anti-HBc (with one EIA assay) and with HBV NAT in minipools of 24 donations. The screening repeatedly reactive anti-HBc donations were then "confirmed" with two supplemental anti-HBc assays, an anti-hepatitis B surface assay (anti-HBs) and with single donation HBV NAT. In a second population of donors, 4186 consecutive donations were screened initially with two different anti-HBc assays in addition to the mandatory HBsAg screening test. The screening repeatedly reactive donations with at least one anti-HBc assay were tested for anti-HBs. RESULTS: In the first subset of 18143 donations, 17593 (97.0%) were negative for HBsAg, anti-HBc and HBV NAT in minipools. 549 (3.0%) were HBsAg and HBV NAT negative, but repeatedly reactive for anti-HBc. Of these 549 donations, 287 could not be "confirmed" with two additional anti-HBc assays and were negative with an anti-HBs assay, as well as with single donation HBV NAT. Only 211 (1.2% of the total screened donations) were "confirmed" positive with at least one of two supplemental anti-HBc assays. One repeatedly reactive HBsAg donation, from a first-time donor, was confirmed positive for HBsAg and anti-HBc, as well as with single donation HBV NAT. In the second subset of 4186 donations, 4014 (95.9%) were screened negative for HBsAg and for anti-HBc, tested with two independent anti-HBc assays. 172 donations (4.1%) were HBsAg negative but repeatedly reactive with at least one of the two anti-HBc assays. Of these 172 samples, 86 were reactive with the first anti-HBc assay only, 13 were reactive with the second anti-HBc assay only and 73 (1.7% of the total screened donations) were "confirmed" positive with both anti-HBc assays. CONCLUSION: The prevalence of anti-HBc "confirmed" positive donations in the two Swiss blood donor populations studied was low (<2%) and we found only one HBV NAT positive (HBsAg positive) donation among more than 18000. Concerning blood product safety, an increase in the deferral rate of less than 2% of anti-HBc positive, potentially infectious donors, would in our opinion make routine anti-HBc testing of blood donations cost-effective. There is however still a need for more specific assays to avoid an unacceptably high deferral rate of "false" positive donors. In contrast, the introduction of HBV NAT in minipools gives minimal benefit due to the inadequate sensitivity of the assay. It remains to evaluate more extensively the value of individual donation NAT, alone or in addition to anti-HBc, as supplemental testing in the context of several Swiss blood donor populations.
Resumo:
PURPOSE: To evaluate the effects of palliative chemotherapy with gemcitabine plus capecitabine (GemCap) on patient-reported outcomes measured using clinical benefit response (CBR) and quality-of-life (QOL) measures in patients with advanced biliary tract cancer. PATIENTS AND METHODS: Patients had to manifest symptoms of advanced biliary tract cancer and have at least one of the following: impaired Karnofsky performance score (60 to 80), average analgesic consumption >or= 10 mg of morphine equivalents per day, and average pain intensity score of >or= 20 mm out of 100 mm. Treatment consisted of oral capecitabine 650 mg/m(2) twice daily on days 1 through 14 plus gemcitabine 1,000 mg/m(2) as a 30-minute infusion on days 1 and 8 every 3 weeks until progression. The primary end point was the number of patients categorized as having a CBR or stable CBR (SCBR) during the first three treatment cycles. RESULTS: Forty-four patients were enrolled (bile duct cancer, n = 36; gallbladder cancers, n = 8). The main grade 3 or 4 adverse events included hematologic toxicity and fatigue. After three cycles, 36% of patients achieved a CBR, and 34% achieved an SCBR. Over the full course of treatment, 57% of patients achieved a CBR, and 18% achieved an SCBR. Improved QOL was observed in patients with a CBR or SCBR. The objective response rate was 25%. Median time to progression and overall survival times were 7.2 months and 13.2 months, respectively. CONCLUSION: Chemotherapy with GemCap is well tolerated and effective and leads to a high CBR rate. Patient-reported outcomes are useful for evaluating the effects of palliative chemotherapy in patients with biliary tract cancer.
Resumo:
Bulk metallic glasses (BMGs) exhibit superior mechanical properties as compared with other conventional materials and have been proposed for numerous engineering and technological applications. Zr/Hf-based BMGs or tungsten reinforced BMG composites are considered as a potential replacement for depleted uranium armor-piercing projectiles because of their ability to form localized shear bands during impact, which has been known to be the dominant plastic deformation mechanism in BMGs. However, in conventional tensile, compressive and bending tests, limited ductility has been observed because of fracture initiation immediately following the shear band formation. To fully investigate shear band characteristics, indentation tests that can confine the deformation in a limited region have been pursued. In this thesis, a detailed investigation of thermal stability and mechanical deformation behavior of Zr/Hf-based BMGs is conducted. First, systematic studies had been implemented to understand the influence of relative compositions of Zr and Hf on thermal stability and mechanical property evolution. Second, shear band evolution under indentations were investigated experimentally and theoretically. Three kinds of indentation studies were conducted on BMGs in the current study. (a) Nano-indentation to determine the mechanical properties as a function of Hf/Zr content. (b) Static Vickers indentation on bonded split specimens to investigate the shear band evolution characteristics beneath the indention. (c) Dynamic Vickers indentation on bonded split specimens to investigate the influence of strain rate. It was found in the present work that gradually replacing Zr by Hf remarkably increases the density and improves the mechanical properties. However, a slight decrease in glass forming ability with increasing Hf content has also been identified through thermodynamic analysis although all the materials in the current study were still found to be amorphous. Many indentation studies have revealed only a few shear bands surrounding the indent on the top surface of the specimen. This small number of shear bands cannot account for the large plastic deformation beneath the indentations. Therefore, a bonded interface technique has been used to observe the slip-steps due to shear band evolution. Vickers indentations were performed along the interface of the bonded split specimen at increasing loads. At small indentation loads, the plastic deformation was primarily accommodated by semi-circular primary shear bands surrounding the indentation. At higher loads, secondary and tertiary shear bands were formed inside this plastic zone. A modified expanding cavity model was then used to predict the plastic zone size characterized by the shear bands and to identify the stress components responsible for the evolution of the various types of shear bands. The applicability of various hardness—yield-strength ( H −σγ ) relationships currently available in the literature for bulk metallic glasses (BMGs) is also investigated. Experimental data generated on ZrHf-based BMGs in the current study and those available elsewhere on other BMG compositions were used to validate the models. A modified expanding-cavity model, employed in earlier work, was extended to propose a new H −σγ relationship. Unlike previous models, the proposed model takes into account not only the indenter geometry and the material properties, but also the pressure sensitivity index of the BMGs. The influence of various model parameters is systematically analyzed. It is shown that there is a good correlation between the model predictions and the experimental data for a wide range of BMG compositions. Under dynamic Vickers indentation, a decrease in indentation hardness at high loading rate was observed compared to static indentation hardness. It was observed that at equivalent loads, dynamic indentations produced more severe deformation features on the loading surface than static indentations. Different from static indentation, two sets of widely spaced semi-circular shear bands with two different curvatures were observed. The observed shear band pattern and the strain rate softening in indentation hardness were rationalized based on the variations in the normal stress on the slip plane, the strain rate of shear and the temperature rise associated with the indentation deformation. Finally, a coupled thermo-mechanical model is proposed that utilizes a momentum diffusion mechanism for the growth and evolution of the final spacing of shear bands. The influence of strain rate, confinement pressure and critical shear displacement on the shear band spacing, temperature rise within the shear band, and the associated variation in flow stress have been captured and analyzed. Consistent with the known pressure sensitive behavior of BMGs, the current model clearly captures the influence of the normal stress in the formation of shear bands. The normal stress not only reduces the time to reach critical shear displacement but also causes a significant temperature rise during the shear band formation. Based on this observation, the variation of shear band spacing in a typical dynamic indentation test has been rationalized. The temperature rise within a shear band can be in excess of 2000K at high strain rate and high confinement pressure conditions. The associated drop in viscosity and flow stress may explain the observed decrease in fracture strength and indentation hardness. The above investigations provide valuable insight into the deformation behavior of BMGs under static and dynamic loading conditions. The shear band patterns observed in the above indentation studies can be helpful to understand and model the deformation features under complex loading scenarios such as the interaction of a penetrator with armor. Future work encompasses (1) extending and modifying the coupled thermo-mechanical model to account for the temperature rise in quasistatic deformation; and (2) expanding this model to account for the microstructural variation-crystallization and free volume migration associated with the deformation.
Resumo:
Multi-input multi-output (MIMO) technology is an emerging solution for high data rate wireless communications. We develop soft-decision based equalization techniques for frequency selective MIMO channels in the quest for low-complexity equalizers with BER performance competitive to that of ML sequence detection. We first propose soft decision equalization (SDE), and demonstrate that decision feedback equalization (DFE) based on soft-decisions, expressed via the posterior probabilities associated with feedback symbols, is able to outperform hard-decision DFE, with a low computational cost that is polynomial in the number of symbols to be recovered, and linear in the signal constellation size. Building upon the probabilistic data association (PDA) multiuser detector, we present two new MIMO equalization solutions to handle the distinctive channel memory. With their low complexity, simple implementations, and impressive near-optimum performance offered by iterative soft-decision processing, the proposed SDE methods are attractive candidates to deliver efficient reception solutions to practical high-capacity MIMO systems. Motivated by the need for low-complexity receiver processing, we further present an alternative low-complexity soft-decision equalization approach for frequency selective MIMO communication systems. With the help of iterative processing, two detection and estimation schemes based on second-order statistics are harmoniously put together to yield a two-part receiver structure: local multiuser detection (MUD) using soft-decision Probabilistic Data Association (PDA) detection, and dynamic noise-interference tracking using Kalman filtering. The proposed Kalman-PDA detector performs local MUD within a sub-block of the received data instead of over the entire data set, to reduce the computational load. At the same time, all the inter-ference affecting the local sub-block, including both multiple access and inter-symbol interference, is properly modeled as the state vector of a linear system, and dynamically tracked by Kalman filtering. Two types of Kalman filters are designed, both of which are able to track an finite impulse response (FIR) MIMO channel of any memory length. The overall algorithms enjoy low complexity that is only polynomial in the number of information-bearing bits to be detected, regardless of the data block size. Furthermore, we introduce two optional performance-enhancing techniques: cross- layer automatic repeat request (ARQ) for uncoded systems and code-aided method for coded systems. We take Kalman-PDA as an example, and show via simulations that both techniques can render error performance that is better than Kalman-PDA alone and competitive to sphere decoding. At last, we consider the case that channel state information (CSI) is not perfectly known to the receiver, and present an iterative channel estimation algorithm. Simulations show that the performance of SDE with channel estimation approaches that of SDE with perfect CSI.
Resumo:
Advances in information technology and global data availability have opened the door for assessments of sustainable development at a truly macro scale. It is now fairly easy to conduct a study of sustainability using the entire planet as the unit of analysis; this is precisely what this work set out to accomplish. The study began by examining some of the best known composite indicator frameworks developed to measure sustainability at the country level today. Most of these were found to value human development factors and a clean local environment, but to gravely overlook consumption of (remote) resources in relation to nature’s capacity to renew them, a basic requirement for a sustainable state. Thus, a new measuring standard is proposed, based on the Global Sustainability Quadrant approach. In a two‐dimensional plot of nations’ Human Development Index (HDI) vs. their Ecological Footprint (EF) per capita, the Sustainability Quadrant is defined by the area where both dimensions satisfy the minimum conditions of sustainable development: an HDI score above 0.8 (considered ‘high’ human development), and an EF below the fair Earth‐share of 2.063 global hectares per person. After developing methods to identify those countries that are closest to the Quadrant in the present‐day and, most importantly, those that are moving towards it over time, the study tackled the question: what indicators of performance set these countries apart? To answer this, an analysis of raw data, covering a wide array of environmental, social, economic, and governance performance metrics, was undertaken. The analysis used country rank lists for each individual metric and compared them, using the Pearson Product Moment Correlation function, to the rank lists generated by the proximity/movement relative to the Quadrant measuring methods. The analysis yielded a list of metrics which are, with a high degree of statistical significance, associated with proximity to – and movement towards – the Quadrant; most notably: Favorable for sustainable development: use of contraception, high life expectancy, high literacy rate, and urbanization. Unfavorable for sustainable development: high GDP per capita, high language diversity, high energy consumption, and high meat consumption. A momentary gain, but a burden in the long‐run: high carbon footprint and debt. These results could serve as a solid stepping stone for the development of more reliable composite index frameworks for assessing countries’ sustainability.
Resumo:
OBJECTIVE: To determine characteristics and clinical course of high-grade anogenital intraepithelial neoplasia (AIN) in human immunodeficiency virus (HIV)-infected women. STUDY DESIGN: HIV-positive women with biopsy-proven high-grade (II and III) vulvar (VIN), vaginal (VAIN) or perianal intraepithelial neoplasia (PAIN) were identified in the electronic databases of 2 colposcopy clinics. RESULTS: A total of 31 patients were identified from 1992 to 2007, of which 30 had a mean follow-up of 47.7 months (SD = 46.0; range, 2.6-166.2). Of the patients, 77.4% had VIN, 12.9% VAIN and 9.7% PAIN at first diagnosis. Age at diagnosis of IN was 36.2 years (SD +/- 5.2; range, 23.5-47.0). Ninety percent of patients received antiretroviral therapy at first diagnosis of IN; 65% (13 of 20) of patients with a follow-up of > 2 years required a second treatment, and 2 developed invasive vulvar cancer (10%). CONCLUSION: AIN among HIV-positive women shows a high relapse rate despite treatment modality used and a substantial invasive potential.
Resumo:
Proteins are linear chain molecules made out of amino acids. Only when they fold to their native states, they become functional. This dissertation aims to model the solvent (environment) effect and to develop & implement enhanced sampling methods that enable a reliable study of the protein folding problem in silico. We have developed an enhanced solvation model based on the solution to the Poisson-Boltzmann equation in order to describe the solvent effect. Following the quantum mechanical Polarizable Continuum Model (PCM), we decomposed net solvation free energy into three physical terms– Polarization, Dispersion and Cavitation. All the terms were implemented, analyzed and parametrized individually to obtain a high level of accuracy. In order to describe the thermodynamics of proteins, their conformational space needs to be sampled thoroughly. Simulations of proteins are hampered by slow relaxation due to their rugged free-energy landscape, with the barriers between minima being higher than the thermal energy at physiological temperatures. In order to overcome this problem a number of approaches have been proposed of which replica exchange method (REM) is the most popular. In this dissertation we describe a new variant of canonical replica exchange method in the context of molecular dynamic simulation. The advantage of this new method is the easily tunable high acceptance rate for the replica exchange. We call our method Microcanonical Replica Exchange Molecular Dynamic (MREMD). We have described the theoretical frame work, comment on its actual implementation, and its application to Trp-cage mini-protein in implicit solvent. We have been able to correctly predict the folding thermodynamics of this protein using our approach.
Resumo:
Strain rate significantly affects the strength of a material. The Split-Hopkinson Pressure Bar (SHPB) was initially used to study the effects of high strain rate (~103 1/s) testing of metals. Later modifications to the original technique allowed for the study of brittle materials such as ceramics, concrete, and rock. While material properties of wood for static and creep strain rates are readily available, data on the dynamic properties of wood are sparse. Previous work using the SHPB technique with wood has been limited in scope to variability of only a few conditions and tests of the applicability of the SHPB theory on wood have not been performed. Tests were conducted using a large diameter (3.0 inch (75 mm)) SHPB. The strain rate and total strain applied to a specimen are dependent on the striker bar length and velocity at impact. Pulse shapers are used to further modify the strain rate and change the shape of the strain pulse. A series of tests were used to determine test conditions necessary to produce a strain rate, total strain, and pulse shape appropriate for testing wood specimens. Hard maple, consisting of sugar maple (Acer saccharum) and black maple (Acer nigrum), and eastern white pine (Pinus strobus) specimens were used to represent a dense hardwood and a low-density soft wood. Specimens were machined to diameters of 2.5 and 3.0 inches and an assortment of lengths were tested to determine the appropriate specimen dimensions. Longitudinal specimens of 1.5 inch length and radial and tangential specimens of 0.5 inch length were found to be most applicable to SHPB testing. Stress/strain curves were generated from the SHPB data and validated with 6061-T6 aluminum and wood specimens. Stress was indirectly corroborated with gaged aluminum specimens. Specimen strain was assessed with strain gages, digital image analysis, and measurement of residual strain to confirm the strain calculated from SHPB data. The SHPB was found to be a useful tool in accurately assessing the material properties of wood under high strain rates (70 to 340 1/s) and short load durations (70 to 150 μs to compressive failure).
Resumo:
The South Florida Water Management District (SFWMD) manages and operates numerous water control structures that are subject to scour. In an effort to reduce scour downstream of these gated structures, laboratory experiments were performed to investigate the effect of active air-injection downstream of the terminal structure of a gated spillway on the depth of the scour hole. A literature review involving similar research revealed significant variables such as the ratio of headwater-to-tailwater depths, the diffuser angle, sediment uniformity, and the ratio of air-to-water volumetric discharge values. The experimental design was based on the analysis of several of these non-dimensional parameters. Bed scouring at stilling basins downstream of gated spillways has been identified as posing a serious risk to the spillway’s structural stability. Although this type of scour has been studied in the past, it continues to represent a real threat to water control structures and requires additional attention. A hydraulic scour channel comprised of a head tank, flow straightening section, gated spillway, stilling basin, scour section, sediment trap, and tail-tank was used to further this analysis. Experiments were performed in a laboratory channel consisting of a 1:30 scale model of the SFWMD S65E spillway structure. To ascertain the feasibility of air injection for scour reduction a proof-of-concept study was performed. Experiments were conducted without air entrainment and with high, medium, and low air entrainment rates for high and low headwater conditions. For the cases with no air entrainment it was found that there was excessive scour downstream of the structure due to a downward roller formed upon exiting the downstream sill of the stilling basin. When air was introduced vertically just downstream of, and at the same level as, the stilling basin sill, it was found that air entrainment does reduce scour depth by up to 58% depending on the air flow rate, but shifts the deepest scour location to the sides of the channel bed instead of the center. Various hydraulic flow conditions were tested without air injection to verify which scenario caused more scour. That scenario, uncontrolled free, in which water does not contact the gate and the water elevation in the stilling basin is lower than the spillway crest, would be used for the remainder of experiments testing air injection. Various air flow rates, diffuser elevations, air hole diameters, air hole spacings, diffuser angles and widths were tested in over 120 experiments. Optimal parameters include air injection at a rate that results in a water-to-air ratio of 0.28, air holes 1.016mm in diameter the entire width of the stilling basin, and a vertically orientated injection pattern. Detailed flow measurements were collected for one case using air injection and one without. An identical flow scenario was used for each experiment, namely that of a high flow rate and upstream headwater depth and a low tailwater depth. Equilibrium bed scour and velocity measurements were taken using an Acoustic Doppler Velocimeter at nearly 3000 points. Velocity data was used to construct a vector plot in order to identify which flow components contribute to the scour hole. Additionally, turbulence parameters were calculated in an effort to help understand why air-injection reduced bed scour. Turbulence intensities, normalized mean flow, normalized kinetic energy, and anisotropy of turbulence plots were constructed. A clear trend emerged that showed air-injection reduces turbulence near the bed and therefore reduces scour potential.