971 resultados para Hierarchical Bayesian


Relevância:

20.00% 20.00%

Publicador:

Resumo:

As the use of found data increases, more systems are being built using adaptive training. Here transforms are used to represent unwanted acoustic variability, e.g. speaker and acoustic environment changes, allowing a canonical model that models only the "pure" variability of speech to be trained. Adaptive training may be described within a Bayesian framework. By using complexity control approaches to ensure robust parameter estimates, the standard point estimate adaptive training can be justified within this Bayesian framework. However during recognition there is usually no control over the amount of data available. It is therefore preferable to be able to use a full Bayesian approach to applying transforms during recognition rather than the standard point estimates. This paper discusses various approximations to Bayesian approaches including a new variational Bayes approximation. The application of these approaches to state-of-the-art adaptively trained systems using both CAT and MLLR transforms is then described and evaluated on a large vocabulary speech recognition task. © 2005 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a Bayesian method for polyphonic music description. The method first divides an input audio signal into a series of sections called snapshots, and then estimates parameters such as fundamental frequencies and amplitudes of the notes contained in each snapshot. The parameter estimation process is based on a frequency domain modelling and Gibbs sampling. Experimental results obtained from audio signals of test note patterns are encouraging; the accuracy is better than 80% for the estimation of fundamental frequencies in terms of semitones and instrument names when the number of simultaneous notes is two.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of Bayes' Theorem to signal processing provides a consistent framework for proceeding from prior knowledge to a posterior inference conditioned on both the prior knowledge and the observed signal data. The first part of the lecture will illustrate how the Bayesian methodology can be applied to a variety of signal processing problems. The second part of the lecture will introduce the concept of Markov Chain Monte-Carlo (MCMC) methods which is an effective approach to overcoming many of the analytical and computational problems inherent in statistical inference. Such techniques are at the centre of the rapidly developing area of Bayesian signal processing which, with the continual increase in available computational power, is likely to provide the underlying framework for most signal processing applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

< p > The past population dynamics of four domestic and one wild species of bovine were estimated using Bayesian skyline plots, a coalescent Markov chain Monte Carlo method that does not require an assumed parametric model of demographic history. Four dom

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes how Bayesian updates of dialogue state can be used to build a bus information spoken dialogue system. The resulting system was deployed as part of the 2010 Spoken Dialogue Challenge. The purpose of this paper is to describe the system, and provide both simulated and human evaluations of its performance. In control tests by human users, the success rate of the system was 24.5% higher than the baseline Lets Go! system. ©2010 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The standard, ad-hoc stopping criteria used in decision tree-based context clustering are known to be sub-optimal and require parameters to be tuned. This paper proposes a new approach for decision tree-based context clustering based on cross validation and hierarchical priors. Combination of cross validation and hierarchical priors within decision tree-based context clustering offers better model selection and more robust parameter estimation than conventional approaches, with no tuning parameters. Experimental results on HMM-based speech synthesis show that the proposed approach achieved significant improvements in naturalness of synthesized speech over the conventional approaches. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forest mapping over mountainous terrains is difficult because of high relief Although digital elevation models (DEMs) are often useful to improve mapping accuracy, high quality DEMs are seldom available over large areas, especially in developing countries

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supply chain tracking information is one of the main levers for achieving operational efficiency. RFID technology and the EPC Network can deliver serial-level product information that was never before available. However, these technologies still fail to meet the managers' visibility requirements in full, since they provide information about product location at specific time instances only. This paper proposes a model that uses the data provided by the EPC Network to deliver enhanced tracking information to the final user. Following a Bayesian approach, the model produces realistic ongoing estimates about the current and future location of products across a supply network, taking into account the characteristics of the product behavior and the configuration of the data collection points. These estimates can then be used to optimize operational decisions that depend on product availability at different locations. The enhancement of tracking information quality is highlighted through an example. © 2009 IFAC.