747 resultados para Healthcare Big Data Analytics
Resumo:
Abstract Massive Open Online Courses (MOOCs) generate enormous amounts of data. The University of Southampton has run and is running dozens of MOOC instances. The vast amount of data resulting from our MOOCs can provide highly valuable information to all parties involved in the creation and delivery of these courses. However, analysing and visualising such data is a task that not all educators have the time or skills to undertake. The recently developed MOOC Dashboard is a tool aimed at bridging such a gap: it provides reports and visualisations based on the data generated by learners in MOOCs. Speakers Manuel Leon is currently a Lecturer in Online Teaching and Learning in the Institute for Learning Innovation and Development (ILIaD). Adriana Wilde is a Teaching Fellow in Electronics and Computer Science, with research interests in MOOCs and Learning Analytics. Darron Tang (4th Year BEng Computer Science) and Jasmine Cheng (BSc Mathematics & Actuarial Science and starting MSc Data Science shortly) have been working as interns over this Summer (2016) as have been developing the MOOC Dashboard.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-07
Resumo:
Background Dementia is a global issue, with increasing prevalence rates impacting on health services internationally. People with dementia are frequently admitted to hospital, an environment that may not be suited to their needs. While many initiatives have been developed to improve their care in the acute setting, there is a lack of cohesive understanding of how staff experience and perceive the care they give to people with dementia in the acute setting. Objectives The aim of this qualitative synthesis was to explore health care staffs’ experiences and perceptions of caring for people with dementia in the acute setting. Qualitative synthesis can bring together isolated findings in a meaningful way that can inform policy development. Settings A screening process, using inclusion/exclusion criteria, identified qualitative studies that focused on health care staff caring for people with dementia in acute settings. Participants Twelve reports of nine studies were included for synthesis. Data extraction was conducted on each report by two researchers. Methods Framework synthesis was employed using VIPS framework, using Values, Individualised, Perspective and Social and psychological as concepts to guide synthesis. The VIPS framework has previously been used for exploring approaches to caring for people with dementia. Quality appraisal was conducted using Critical Appraisal Skills Programme (CASP) and NVivo facilitated sensitivity analysis to ensure confidence in the findings. Results Key themes, derived from VIPS, included a number of specific subthemes that examined: infrastructure and care pathways, person-centred approaches to care, how the person interacts with their environment and other patients, and family involvement in care decisions. The synthesis identified barriers to appropriate care for the person with dementia. These include ineffective pathways of care, unsuitable environments, inadequate resources and staffing levels and lack of emphasis on education and training for staff caring for people with dementia. Conclusions This review has identified key issues in the care of people with dementia in the acute setting: improving pathways of care, creating suitable environments, addressing resources and staffing levels and placing emphasis on the education for staff caring for people with dementia. Recommendations are made for practice consideration, policy development and future research. Leadership is required to instil the values needed to care for this client group in an effective and personcentred way. Qualitative evidence synthesis can inform policy and in this case, recommends VIPS as a suitable framework for guiding decisions around care for people with dementia in acute settings.
Resumo:
Income decreasing strategies conducted by management could be harmful for various stakeholders. One example is big bath accounting, which could be accomplished in numer- ous ways. This study focus on big baths achieved by recognising impairments of goodwill. Purpose - The purpose of this study is to examine patterns of association between big bath accounting and impairment of goodwill within the telecommunication service industry in Europe. Further, this study aim at contributing to the discussion regarding utilisation of big baths through impairments of goodwill, and takes the perspective of an external stakehold- er. Delimitations - The study is restricted to European telecommunication entities comprised in STOXX Europe 600 Index. Method - This study was conducted using a hybrid of qualitative and quantitative research strategy with a deductive approach. The five indicators used to identify various big bath behaviours were inspired and derived from theory and previous research. Data from 2009 to 2015 was collected from the companies’ annual reports and websites, and analysed by the help of codification of each fulfilled indicator where 2009 merely served as a compara- tive year for 2010. By the use of a scoreboard the collected data was summarised on an ag- gregated yearly basis as the industry, not the specific companies, were analysed. Empirical findings - The results of this study suggests that big baths are executed among tele- communication companies within Europe. These are conducted simultaneously as impair- ments of goodwill are present, facilitated by earning management. A possible explanation is considered to be the room for interpretation inherent in IAS 36, enabling goodwill impair- ments to be recognised on managers’ command. Thereby an impairment could be “saved” for better or worse circumstances, or recognised when there exist an opportunity to max- imise (the manager's) wealth in the future. This study reveal the co-occurrence of goodwill impairments and big bath-indications, however a review of causal relationships are not en- abled by the limitations of the chosen method.
Resumo:
Explanation of Minimum Data Set (MDS), implementation of Section Q, overview of the program, local contacts and functions, Referral Agency information, role and assistance provided by Long-Term care Ombudsman
Resumo:
The last decades have been characterized by a continuous adoption of IT solutions in the healthcare sector, which resulted in the proliferation of tremendous amounts of data over heterogeneous systems. Distinct data types are currently generated, manipulated, and stored, in the several institutions where patients are treated. The data sharing and an integrated access to this information will allow extracting relevant knowledge that can lead to better diagnostics and treatments. This thesis proposes new integration models for gathering information and extracting knowledge from multiple and heterogeneous biomedical sources. The scenario complexity led us to split the integration problem according to the data type and to the usage specificity. The first contribution is a cloud-based architecture for exchanging medical imaging services. It offers a simplified registration mechanism for providers and services, promotes remote data access, and facilitates the integration of distributed data sources. Moreover, it is compliant with international standards, ensuring the platform interoperability with current medical imaging devices. The second proposal is a sensor-based architecture for integration of electronic health records. It follows a federated integration model and aims to provide a scalable solution to search and retrieve data from multiple information systems. The last contribution is an open architecture for gathering patient-level data from disperse and heterogeneous databases. All the proposed solutions were deployed and validated in real world use cases.
Resumo:
Introduction and background: Survival following critical illness is associated with a significant burden of physical, emotional and psychosocial morbidity. Recovery can be protracted and incomplete, with important and sustained effects upon everyday life, including family life, social participation and return to work. In stark contrast with other critically ill patient groups (eg, those following cardiothoracic surgery), there are comparatively few interventional studies of rehabilitation among the general intensive care unit patient population. This paper outlines the protocol for a sub study of the RECOVER study: a randomised controlled trial evaluating a complex intervention of enhanced ward-based rehabilitation for patients following discharge from intensive care. Methods and analysis: The RELINQUISH study is a nested longitudinal, qualitative study of family support and perceived healthcare needs among RECOVER participants at key stages of the recovery process and at up to 1 year following hospital discharge. Its central premise is that recovery is a dynamic process wherein patients’ needs evolve over time. RELINQUISH is novel in that we will incorporate two parallel strategies into our data analysis: (1) a pragmatic health services-oriented approach, using an a priori analytical construct, the ‘Timing it Right’ framework and (2) a constructivist grounded theory approach which allows the emergence of new themes and theoretical understandings from the data. We will subsequently use Qualitative Health Needs Assessment methodology to inform the development of timely and responsive healthcare interventions throughout the recovery process. Ethics and dissemination: The protocol has been approved by the Lothian Research Ethics Committee (protocol number HSRU011). The study has been added to the UK Clinical Research Network Database (study ID. 9986). The authors will disseminate the findings in peer reviewed publications and to relevant critical care stakeholder groups.
Resumo:
Abstract and Summary of Thesis: Background: Individuals with Major Mental Illness (such as schizophrenia and bipolar disorder) experience increased rates of physical health comorbidity compared to the general population. They also experience inequalities in access to certain aspects of healthcare. This ultimately leads to premature mortality. Studies detailing patterns of physical health comorbidity are limited by their definitions of comorbidity, single disease approach to comorbidity and by the study of heterogeneous groups. To date the investigation of possible sources of healthcare inequalities experienced by individuals with Major Mental Illness (MMI) is relatively limited. Moreover studies detailing the extent of premature mortality experienced by individuals with MMI vary both in terms of the measure of premature mortality reported and age of the cohort investigated, limiting their generalisability to the wider population. Therefore local and national data can be used to describe patterns of physical health comorbidity, investigate possible reasons for health inequalities and describe mortality rates. These findings will extend existing work in this area. Aims and Objectives: To review the relevant literature regarding: patterns of physical health comorbidity, evidence for inequalities in physical healthcare and evidence for premature mortality for individuals with MMI. To examine the rates of physical health comorbidity in a large primary care database and to assess for evidence for inequalities in access to healthcare using both routine primary care prescribing data and incentivised national Quality and Outcome Framework (QOF) data. Finally to examine the rates of premature mortality in a local context with a particular focus on cause of death across the lifespan and effect of International Classification of Disease Version 10 (ICD 10) diagnosis and socioeconomic status on rates and cause of death. Methods: A narrative review of the literature surrounding patterns of physical health comorbidity, the evidence for inequalities in physical healthcare and premature mortality in MMI was undertaken. Rates of physical health comorbidity and multimorbidity in schizophrenia and bipolar disorder were examined using a large primary care dataset (Scottish Programme for Improving Clinical Effectiveness in Primary Care (SPICE)). Possible inequalities in access to healthcare were investigated by comparing patterns of prescribing in individuals with MMI and comorbid physical health conditions with prescribing rates in individuals with physical health conditions without MMI using SPICE data. Potential inequalities in access to health promotion advice (in the form of smoking cessation) and prescribing of Nicotine Replacement Therapy (NRT) were also investigated using SPICE data. Possible inequalities in access to incentivised primary healthcare were investigated using National Quality and Outcome Framework (QOF) data. Finally a pre-existing case register (Glasgow Psychosis Clinical Information System (PsyCIS)) was linked to Scottish Mortality data (available from the Scottish Government Website) to investigate rates and primary cause of death in individuals with MMI. Rate and primary cause of death were compared to the local population and impact of age, socioeconomic status and ICD 10 diagnosis (schizophrenia vs. bipolar disorder) were investigated. Results: Analysis of the SPICE data found that sixteen out of the thirty two common physical comorbidities assessed, occurred significantly more frequently in individuals with schizophrenia. In individuals with bipolar disorder fourteen occurred more frequently. The most prevalent chronic physical health conditions in individuals with schizophrenia and bipolar disorder were: viral hepatitis (Odds Ratios (OR) 3.99 95% Confidence Interval (CI) 2.82-5.64 and OR 5.90 95% CI 3.16-11.03 respectively), constipation (OR 3.24 95% CI 3.01-3.49 and OR 2.84 95% CI 2.47-3.26 respectively) and Parkinson’s disease (OR 3.07 95% CI 2.43-3.89 and OR 2.52 95% CI 1.60-3.97 respectively). Both groups had significantly increased rates of multimorbidity compared to controls: in the schizophrenia group OR for two comorbidities was 1.37 95% CI 1.29-1.45 and in the bipolar disorder group OR was 1.34 95% CI 1.20-1.49. In the studies investigating inequalities in access to healthcare there was evidence of: under-recording of cardiovascular-related conditions for example in individuals with schizophrenia: OR for Atrial Fibrillation (AF) was 0.62 95% CI 0.52 - 0.73, for hypertension 0.71 95% CI 0.67 - 0.76, for Coronary Heart Disease (CHD) 0.76 95% CI 0.69 - 0.83 and for peripheral vascular disease (PVD) 0.83 95% CI 0.72 - 0.97. Similarly in individuals with bipolar disorder OR for AF was 0.56 95% CI 0.41-0.78, for hypertension 0.69 95% CI 0.62 - 0.77 and for CHD 0.77 95% CI 0.66 - 0.91. There was also evidence of less intensive prescribing for individuals with schizophrenia and bipolar disorder who had comorbid hypertension and CHD compared to individuals with hypertension and CHD who did not have schizophrenia or bipolar disorder. Rate of prescribing of statins for individuals with schizophrenia and CHD occurred significantly less frequently than in individuals with CHD without MMI (OR 0.67 95% CI 0.56-0.80). Rates of prescribing of 2 or more anti-hypertensives were lower in individuals with CHD and schizophrenia and CHD and bipolar disorder compared to individuals with CHD without MMI (OR 0.66 95% CI 0.56-0.78 and OR 0.55 95% CI 0.46-0.67, respectively). Smoking was more common in individuals with MMI compared to individuals without MMI (OR 2.53 95% CI 2.44-2.63) and was particularly increased in men (OR 2.83 95% CI 2.68-2.98). Rates of ex-smoking and non-smoking were lower in individuals with MMI (OR 0.79 95% CI 0.75-0.83 and OR 0.50 95% CI 0.48-0.52 respectively). However recorded rates of smoking cessation advice in smokers with MMI were significantly lower than the recorded rates of smoking cessation advice in smokers with diabetes (88.7% vs. 98.0%, p<0.001), smokers with CHD (88.9% vs. 98.7%, p<0.001) and smokers with hypertension (88.3% vs. 98.5%, p<0.001) without MMI. The odds ratio of NRT prescription was also significantly lower in smokers with MMI without diabetes compared to smokers with diabetes without MMI (OR 0.75 95% CI 0.69-0.81). Similar findings were found for smokers with MMI without CHD compared to smokers with CHD without MMI (OR 0.34 95% CI 0.31-0.38) and smokers with MMI without hypertension compared to smokers with hypertension without MMI (OR 0.71 95% CI 0.66-0.76). At a national level, payment and population achievement rates for the recording of body mass index (BMI) in MMI was significantly lower than the payment and population achievement rates for BMI recording in diabetes throughout the whole of the UK combined: payment rate 92.7% (Inter Quartile Range (IQR) 89.3-95.8 vs. 95.5% IQR 93.3-97.2, p<0.001 and population achievement rate 84.0% IQR 76.3-90.0 vs. 92.5% IQR 89.7-94.9, p<0.001 and for each country individually: for example in Scotland payment rate was 94.0% IQR 91.4-97.2 vs. 96.3% IQR 94.3-97.8, p<0.001. Exception rate was significantly higher for the recording of BMI in MMI than the exception rate for BMI recording in diabetes for the UK combined: 7.4% IQR 3.3-15.9 vs. 2.3% IQR 0.9-4.7, p<0.001 and for each country individually. For example in Scotland exception rate in MMI was 11.8% IQR 5.4-19.3 compared to 3.5% IQR 1.9-6.1 in diabetes. Similar findings were found for Blood Pressure (BP) recording: across the whole of the UK payment and population achievement rates for BP recording in MMI were also significantly reduced compared to payment and population achievement rates for the recording of BP in chronic kidney disease (CKD): payment rate: 94.1% IQR 90.9-97.1 vs.97.8% IQR 96.3-98.9 and p<0.001 and population achievement rate 87.0% IQR 81.3-91.7 vs. 97.1% IQR 95.5-98.4, p<0.001. Exception rates again were significantly higher for the recording of BP in MMI compared to CKD (6.4% IQR 3.0-13.1 vs. 0.3% IQR 0.0-1.0, p<0.001). There was also evidence of differences in rates of recording of BMI and BP in MMI across the UK. BMI and BP recording in MMI were significantly lower in Scotland compared to England (BMI:-1.5% 99% CI -2.7 to -0.3%, p<0.001 and BP: -1.8% 99% CI -2.7 to -0.9%, p<0.001). While rates of BMI and BP recording in diabetes and CKD were similar in Scotland compared to England (BMI: -0.5 99% CI -1.0 to 0.05, p=0.004 and BP: 0.02 99% CI -0.2 to 0.3, p=0.797). Data from the PsyCIS cohort showed an increase in Standardised Mortality Ratios (SMR) across the lifespan for individuals with MMI compared to the local Glasgow and wider Scottish populations (Glasgow SMR 1.8 95% CI 1.6-2.0 and Scotland SMR 2.7 95% CI 2.4-3.1). Increasing socioeconomic deprivation was associated with an increased overall rate of death in MMI (350.3 deaths/10,000 population/5 years in the least deprived quintile compared to 794.6 deaths/10,000 population/5 years in the most deprived quintile). No significant difference in rate of death for individuals with schizophrenia compared with bipolar disorder was reported (6.3% vs. 4.9%, p=0.086), but primary cause of death varied: with higher rates of suicide in individuals with bipolar disorder (22.4% vs. 11.7%, p=0.04). Discussion: Local and national datasets can be used for epidemiological study to inform local practice and complement existing national and international studies. While the strengths of this thesis include the large data sets used and therefore their likely representativeness to the wider population, some limitations largely associated with using secondary data sources are acknowledged. While this thesis has confirmed evidence of increased physical health comorbidity and multimorbidity in individuals with MMI, it is likely that these findings represent a significant under reporting and likely under recognition of physical health comorbidity in this population. This is likely due to a combination of patient, health professional and healthcare system factors and requires further investigation. Moreover, evidence of inequality in access to healthcare in terms of: physical health promotion (namely smoking cessation advice), recording of physical health indices (BMI and BP), prescribing of medications for the treatment of physical illness and prescribing of NRT has been found at a national level. While significant premature mortality in individuals with MMI within a Scottish setting has been confirmed, more work is required to further detail and investigate the impact of socioeconomic deprivation on cause and rate of death in this population. It is clear that further education and training is required for all healthcare staff to improve the recognition, diagnosis and treatment of physical health problems in this population with the aim of addressing the significant premature mortality that is seen. Conclusions: Future work lies in the challenge of designing strategies to reduce health inequalities and narrow the gap in premature mortality reported in individuals with MMI. Models of care that allow a much more integrated approach to diagnosing, monitoring and treating both the physical and mental health of individuals with MMI, particularly in areas of social and economic deprivation may be helpful. Strategies to engage this “hard to reach” population also need to be developed. While greater integration of psychiatric services with primary care and with specialist medical services is clearly vital the evidence on how best to achieve this is limited. While the National Health Service (NHS) is currently undergoing major reform, attention needs to be paid to designing better ways to improve the current disconnect between primary and secondary care. This should then help to improve physical, psychological and social outcomes for individuals with MMI.
Resumo:
Rigid adherence to pre-specified thresholds and static graphical representations can lead to incorrect decisions on merging of clusters. As an alternative to existing automated or semi-automated methods, we developed a visual analytics approach for performing hierarchical clustering analysis of short time-series gene expression data. Dynamic sliders control parameters such as the similarity threshold at which clusters are merged and the level of relative intra-cluster distinctiveness, which can be used to identify "weak-edges" within clusters. An expert user can drill down to further explore the dendrogram and detect nested clusters and outliers. This is done by using the sliders and by pointing and clicking on the representation to cut the branches of the tree in multiple-heights. A prototype of this tool has been developed in collaboration with a small group of biologists for analysing their own datasets. Initial feedback on the tool has been positive.
Resumo:
International audience
Resumo:
As usage metrics continue to attain an increasingly central role in library system assessment and analysis, librarians tasked with system selection, implementation, and support are driven to identify metric approaches that simultaneously require less technical complexity and greater levels of data granularity. Such approaches allow systems librarians to present evidence-based claims of platform usage behaviors while reducing the resources necessary to collect such information, thereby representing a novel approach to real-time user analysis as well as dual benefit in active and preventative cost reduction. As part of the DSpace implementation for the MD SOAR initiative, the Consortial Library Application Support (CLAS) division has begun test implementation of the Google Tag Manager analytic system in an attempt to collect custom analytical dimensions to track author- and university-specific download behaviors. Building on the work of Conrad , CLAS seeks to demonstrate that the GTM approach to custom analytics provides both granular metadata-based usage statistics in an approach that will prove extensible for additional statistical gathering in the future. This poster will discuss the methodology used to develop these custom tag approaches, the benefits of using the GTM model, and the risks and benefits associated with further implementation.
Resumo:
International audience