940 resultados para HINDLIMB KINEMATICS
Resumo:
The quark condensate is a fundamental free parameter of Chiral Perturbation Theory ($chi PT$), since it determines the relative size of the mass and momentum terms in the power expansion. In order to confirm or contradict the assumption of a large quark condensate, on which $chi PT$ is based, experimental tests are needed. In particular, the $S$-wave $pipi$ scattering lengths $a_0^0$ and $a_0^2$ can be predicted precisely within $chi PT$ as a function of this parameter and can be measured very cleanly in the decay $K^{pm} to pi^{+} pi^{-} e^{pm} stackrel{mbox{tiny(---)}}{nu_e}$ ($K_{e4}$). About one third of the data collected in 2003 and 2004 by the NA48/2 experiment were analysed and 342,859 $K_{e4}$ candidates were selected. The background contamination in the sample could be reduced down to 0.3% and it could be estimated directly from the data, by selecting events with the same signature as $K_{e4}$, but requiring for the electron the opposite charge with respect to the kaon, the so-called ``wrong sign'' events. This is a clean background sample, since the kaon decay with $Delta S=-Delta Q$, that would be the only source of signal, can only take place through two weak decays and is therefore strongly suppressed. The Cabibbo-Maksymowicz variables, used to describe the kinematics of the decay, were computed under the assumption of a fixed kaon momentum of 60 GeV/$c$ along the $z$ axis, so that the neutrino momentum could be obtained without ambiguity. The measurement of the form factors and of the $pipi$ scattering length $a_0^0$ was performed in a single step by comparing the five-dimensional distributions of data and MC in the kinematic variables. The MC distributions were corrected in order to properly take into account the trigger and selection efficiencies of the data and the background contamination. The following parameter values were obtained from a binned maximum likelihood fit, where $a_0^2$ was expressed as a function of $a_0^0$ according to the prediction of chiral perturbation theory: f'_s/f_s = 0.133+- 0.013(stat)+- 0.026(syst) f''_s/f_s = -0.041+- 0.013(stat)+- 0.020(syst) f_e/f_s = 0.221+- 0.051(stat)+- 0.105(syst) f'_e/f_s = -0.459+- 0.170(stat)+- 0.316(syst) tilde{f_p}/f_s = -0.112+- 0.013(stat)+- 0.023(syst) g_p/f_s = 0.892+- 0.012(stat)+- 0.025(syst) g'_p/f_s = 0.114+- 0.015(stat)+- 0.022(syst) h_p/f_s = -0.380+- 0.028(stat)+- 0.050(syst) a_0^0 = 0.246+- 0.009(stat)+- 0.012(syst)}+- 0.002(theor), where the statistical uncertainty only includes the effect of the data statistics and the theoretical uncertainty is due to the width of the allowed band for $a_0^2$.
Resumo:
I applied the SBAS-DInSAR method to the Mattinata Fault (MF) (Southern Italy) and to the Doruneh Fault System (DFS) (Central Iran). In the first case, I observed limited internal deformation and determined the right lateral kinematic pattern with a compressional pattern in the northern sector of the fault. Using the Okada model I inverted the observed velocities defining a right lateral strike slip solution for the MF. Even if it fits the data within the uncertainties, the modeled slip rate of 13-15 mm yr-1 seems too high with respect to the geological record. Concerning the Western termination of DFS, SAR data confirms the main left lateral transcurrent kinematics of this fault segment, but reveal a compressional component. My analytical model fits successfully the observed data and quantifies the slip in ~4 mm yr-1 and ~2.5 mm yr-1 of pure horizontal and vertical displacement respectively. The horizontal velocity is compatible with geological record. I applied classic SAR interferometry to the October–December 2008 Balochistan (Central Pakistan) seismic swarm; I discerned the different contributions of the three Mw > 5.7 earthquakes determining fault positions, lengths, widths, depths and slip distributions, constraining the other source parameters using different Global CMT solutions. A well constrained solution has been obtained for the 09/12/2008 aftershock, whereas I tested two possible fault solutions for the 28-29/10/08 mainshocks. It is not possible to favor one of the solutions without independent constraints derived from geological data. Finally I approached the study of the earthquake-cycle in transcurrent tectonic domains using analog modeling, with alimentary gelatins like crust analog material. I successfully joined the study of finite deformation with the earthquake cycle study and sudden dislocation. A lot of seismic cycles were reproduced in which a characteristic earthquake is recognizable in terms of displacement, coseismic velocity and recurrence time.
Resumo:
This thesis is based on the integration of traditional and innovative approaches aimed at improving the normal faults seimogenic identification and characterization, focusing mainly on slip-rate estimate as a measure of the fault activity. The L’Aquila Mw 6.3 April 6, 2009 earthquake causative fault, namely the Paganica - San Demetrio fault system (PSDFS), was used as a test site. We developed a multidisciplinary and scale‐based strategy consisting of paleoseismological investigations, detailed geomorphological and geological field studies, as well as shallow geophysical imaging and an innovative application of physical properties measurements. We produced a detailed geomorphological and geological map of the PSDFS, defining its tectonic style, arrangement, kinematics, extent, geometry and internal complexities. The PSDFS is a 19 km-long tectonic structure, characterized by a complex structural setting and arranged in two main sectors: the Paganica sector to the NW, characterized by a narrow deformation zone, and the San Demetrio sector to SE, where the strain is accommodated by several tectonic structures, exhuming and dissecting a wide Quaternary basin, suggesting the occurrence of strain migration through time. The integration of all the fault displacement data and age constraints (radiocarbon dating, optically stimulated luminescence (OSL) and tephrochronology) helped in calculating an average Quaternary slip-rate representative for the PSDFS of 0.27 - 0.48 mm/yr. On the basis of its length (ca. 20 km) and slip per event (up to 0.8 m) we also estimated a max expected Magnitude of 6.3-6.8 for this fault. All these topics have a significant implication in terms of surface faulting hazard in the area and may contribute also to the understanding of the PSDFS seismic behavior and of the local seismic hazard.
Resumo:
It is lively debated how eclogites find their way from deep to mid-crustal levels during exhumation. Different exhumation models for high-pressure and ultrahigh-pressure rocks were suggested in previous studies, based mainly on field observations and less on microstructural studies on the exhumed rocks. The development and improvement of electron microscopy techniques allows it, to focus interest on direct investigations of microstructures and crystallographic properties in eclogites. In this case, it is of importance to study the applicability of crystallographic measurements on eclogites for exhumation processes and to unravel which processes affect eclogite textures. Previous studies suggested a strong relationship between deformation and lattice preferred orientation (LPO) in omphacite but it is still unclear if the deformation is related to the exhumation of eclogites. This study is focused on the questions which processes affect omphacite LPO and if textural investigations of omphacite are applicable for studying eclogite exhumation. Therefore, eclogites from two examples in the Alps and in the Caledonides were collected systematically and investigated with respect to omphacite LPO by using the electron backscattered diffraction (EBSD) technique. Omphacite textures of the Tauern Window (Austria) and the Western Gneiss Region (Norway) were studied to compare lattice preferred orientation with field observations and suggested exhumation models from previous studies. The interpretation of omphacite textures, regarding the deformation regime is mainly based on numerical simulations in previous studies. Omphacite LPO patterns of the Eclogite Zone are clearly independent from any kind of exhumation process. The textures were generated during omphacite growth on the prograde path of eclogite development until metamorphic peak conditions. Field observations in the Eclogite Zone show that kinematics in garnet mica schist, surrounding the eclogites, strongly indicate an extrusion wedge geometry. Stretching lineations show top-N thrusting at the base and a top-S normal faulting with a sinistral shear component at the top of the Eclogite Zone. The different shear sense on both sides of the unit does not affect the omphacite textures in any way. The omphacite lattice preferred orientation patterns of the Western Gneiss Region can not be connected with any exhumation model. The textures were probably generated during the metamorphic peak and reflect the change from subduction to exhumation. Eclogite Zone and Western Gneiss Region differ significantly in size and especially in metamorphic conditions. While the Eclogite Zone is characterized by constant P-T conditions (600-650°C, 20-25 kbar), the Western Gneiss Region contains a wide P-T range from high- to ultrahigh pressure conditions (400-800°C, 20-35 kbar). In contrast to this, the omphacite textures of both units are very similar. This means that omphacite LPO is independent from P-T conditions and therefore from burial depth. Further, in both units, omphacite LPO is independent from grain and subgrain size as well as from any shape preferred orientation (SPO) on grain and subgrain scale. Overall, omphacite lattice preferred orientation are generated on the prograde part of omphacite development. Therefore, textural investigations on omphacite LPO are not applicable to study eclogite exhumation.
From fall-risk assessment to fall detection: inertial sensors in the clinical routine and daily life
Resumo:
Falls are caused by complex interaction between multiple risk factors which may be modified by age, disease and environment. A variety of methods and tools for fall risk assessment have been proposed, but none of which is universally accepted. Existing tools are generally not capable of providing a quantitative predictive assessment of fall risk. The need for objective, cost-effective and clinically applicable methods would enable quantitative assessment of fall risk on a subject-specific basis. Tracking objectively falls risk could provide timely feedback about the effectiveness of administered interventions enabling intervention strategies to be modified or changed if found to be ineffective. Moreover, some of the fundamental factors leading to falls and what actually happens during a fall remain unclear. Objectively documented and measured falls are needed to improve knowledge of fall in order to develop more effective prevention strategies and prolong independent living. In the last decade, several research groups have developed sensor-based automatic or semi-automatic fall risk assessment tools using wearable inertial sensors. This approach may also serve to detect falls. At the moment, i) several fall-risk assessment studies based on inertial sensors, even if promising, lack of a biomechanical model-based approach which could provide accurate and more detailed measurements of interests (e.g., joint moments, forces) and ii) the number of published real-world fall data of older people in a real-world environment is minimal since most authors have used simulations with healthy volunteers as a surrogate for real-world falls. With these limitations in mind, this thesis aims i) to suggest a novel method for the kinematics and dynamics evaluation of functional motor tasks, often used in clinics for the fall-risk evaluation, through a body sensor network and a biomechanical approach and ii) to define the guidelines for a fall detection algorithm based on a real-world fall database availability.
Resumo:
One of the main targets of the CMS experiment is to search for the Standard Model Higgs boson. The 4-lepton channel (from the Higgs decay h->ZZ->4l, l = e,mu) is one of the most promising. The analysis is based on the identification of two opposite-sign, same-flavor lepton pairs: leptons are required to be isolated and to come from the same primary vertex. The Higgs would be statistically revealed by the presence of a resonance peak in the 4-lepton invariant mass distribution. The 4-lepton analysis at CMS is presented, spanning on its most important aspects: lepton identification, variables of isolation, impact parameter, kinematics, event selection, background control and statistical analysis of results. The search leads to an evidence for a signal presence with a statistical significance of more than four standard deviations. The excess of data, with respect to the background-only predictions, indicates the presence of a new boson, with a mass of about 126 GeV/c2 , decaying to two Z bosons, whose characteristics are compatible with the SM Higgs ones.
Resumo:
In the last decade, sensitive observations have revealed that disc galaxies are surrounded by multiphase gaseous halos produced by the circulation of gas from the discs to the environment and vice-versa. This Thesis is a study of the gaseous halo of the Milky Way carried out via the modelling of the HI emission and the available absorption-line data. We fitted simple kinematical models to the HI LAB Survey and found that the Galaxy has a massive (~3x10^8 Mo) HI halo extending a few kiloparsecs above the plane. This layer rotates more slowly than the disc and shows a global inflow motion, a kinematics similar to that observed in the HI halos of nearby galaxies. We built a dynamical model of the galactic fountain to reproduce the properties of this layer. In this model, fountain clouds are ejected from the disc by SN feedback and - as suggested by hydrodynamical simulations - triggers the cooling of coronal gas, which is entrained by the cloud wakes and accretes onto the disc when the clouds fall back. For a proper choice of the parameters, the model reproduces well the HI data and predicts an accretion of coronal gas onto the disc at a rate of 2 Mo/yr. We extended this model to the warm-hot component of the halo, showing that most of the ion absorption features observed towards background sources are consistent with being produced in the turbulent wakes that lag behind the fountain clouds. Specifically, the column densities, positions, and velocities of the absorbers are well reproduced by our model. Finally, we studied the gas content of galaxies extracted from a cosmological N-body+SPH simulation, and found that an HI halo with the forementioned properties is not observed, probably due ti the relatively low resolution of the simulations.
Resumo:
The analysis of apatite fission tracks is applied to the study of the syn- and post-collisional thermochronological evolution of a vast area that includes the Eastern Pontides, their continuation in the Lesser Caucasus of Georgia (Adjara-Trialeti zone) and northern Armenia, and the eastern Anatolian Plateau. The resulting database is then integrated with the data presented by Okay et al. (2010) for the Bitlis Pütürge Massif, i.e. the western portion of the Bitlis-Zagros collision zone between Arabia and Eurasia. The mid-Miocene exhumation episode along the Black Sea coast and Lesser Caucasus of Armenia documented in this dissertation mirrors the age of collision between the Eurasian and Arabian plates along the Bitlis suture zone. We argue that tectonic stresses generated along the Bitlis collision zone were transmitted northward across eastern Anatolia and focused (i) at the rheological boundary between the Anatolian continental lithosphere and the (quasi)oceanic lithosphere of the Black Sea, and (ii) along major pre-existing discontinuities like the Sevan-Akera suture zone.The integration of both present-day crustal dynamics (GPS-derived kinematics and distribution of seismicity) and thermochronological data presented in this paper provides a comparison between short- and long-term deformation patterns for the entire eastern Anatolia-Transcaucasian region. Two successive stages of Neogene deformation of the northern foreland of the Arabia-Eurasia collision zone can be inferred. (i) Early and Middle Miocene: continental deformation was concentrated along the Arabia-Eurasia (Bitlis) collision zone but tectonic stress was also transferred northward across eastern Anatolia, focusing along the eastern Black Sea continent-ocean rheological transition and along major pre-existing structural discontinuities. (ii) Since Late-Middle Miocene time the westward translation of Anatolia and the activation of the North and Eastern Anatolian Fault systems have reduced efficient northward stress transfer.
Resumo:
The electric dipole response of neutron-rich nickel isotopes has been investigated using the LAND setup at GSI in Darmstadt (Germany). Relativistic secondary beams of 56−57Ni and 67−72Ni at approximately 500 AMeV have been generated using projectile fragmentation of stable ions on a 4 g/cm2 Be target and subsequent separation in the magnetic dipole fields of the FRagment Separator (FRS). After reaching the LAND setup in Cave C, the radioactive ions were excited electromagnetically in the electric field of a Pb target. The decay products have been measured in inverse kinematics using various detectors. Neutron-rich 67−69Ni isotopes decay by the emission of neutrons, which are detected in the LAND detector. The present analysis concentrates on the (gamma,n) and (gamma,2n) channels in these nuclei, since the proton and three-neutron thresholds are unlikely to be reached considering the virtual photon spectrum for nickel ions at 500 AMeV. A measurement of the stable 58Ni isotope is used as a benchmark to check the accuracy of the present results with previously published data. The measured (gamma,n) and (gamma,np) channels are compared with an inclusive photoneutron measurement by Fultz and coworkers, which are consistent within the respective errors. The measured excitation energy distributions of 67−69Ni contain a large portion of the Giant Dipole Resonance (GDR) strength predicted by the Thomas-Reiche-Kuhn energy-weighted sum rule, as well as a significant amount of low-lying E1 strength, that cannot be attributed to the GDR alone. The GDR distribution parameters are calculated using well-established semi-empirical systematic models, providing the peak energies and widths. The GDR strength is extracted from the chi-square minimization of the model GDR to the measured data of the (gamma,2n) channel, thereby excluding any influence of eventual low-lying strength. The subtraction of the obtained GDR distribution from the total measured E1 strength provides the low-lying E1 strength distribution, which is attributed to the Pygmy Dipole Resonance (PDR). The extraction of the peak energy, width and strength is performed using a Gaussian function. The minimization of trial Gaussian distributions to the data does not converge towards a sharp minimum. Therefore, the results are presented by a chi-square distribution as a function of all three Gaussian parameters. Various predictions of PDR distributions exist, as well as a recent measurement of the 68Ni pygmy dipole-resonance obtained by virtual photon scattering, to which the present pygmy dipole-resonance distribution is also compared.
Resumo:
L'obiettivo della tesi è stato quello di indagare il complesso problema della vulnerabilità sismica dei ponte in muratura ad arco utilizzando modelli semplificati. Dopo una descrizione dei materiali da costruzione impiegati nella realizzazione e dei principali elementi dei un ponti in muratura, si è indirizzato lo studio di un ponte ad arco situato nel comune di San Marcello Pistoiese. Viene mostrato un modello numerico che permette di descrivere il comportamento strutturale del ponte sotto azione sismica e di valutare la capacità di carico del ponte sottoposto ad una azione trasversale. In un secondo momento viene descritta la realizzazione di un modello in scala del ponte, che è stato sottoposto a prove distruttive effettuate per valutare la capacità di carico del ponte rispetto ad un ipotetica azione orizzontale. Si è cercato poi di inquadrare il problema in un modello teorico che faccia riferimento all'analisi limite. Esso descrive un cinematismo di collasso a telaio che prende spunto dal quadro fessurativo del modello in muratura. Infine sono stati presentati modelli FEM numerici in ordine di complessità crescente, cercando di inquadrare il comportamento meccanico del prototipo del ponte. Tre tipi di modelli sono rappresentati: un telaio incernierato alle estremità costituito da elementi beam con resistenza alla flessione . Il secondo tipo è costituito da una reticolare equivalente che mima lo schema del ponte ed è formato solo da bielle. Infine, il terzo tipo cerca di descrivere l'intero modello con elementi tridimensionali.
Resumo:
Il presente lavoro di tesi ha riguardato una riformulazione teorica, una modellazione numerica e una serie di applicazioni della Generalized Beam Theory per lo studio dei profili in parete sottile con particolare riguardo ai profili in acciaio formati a freddo. In particolare, in questo lavoro è proposta una riscrittura della cinematica GBT che introduce in una forma originale la deformabilità a taglio della sezione. Tale formulazione consente di conservare il formato della GBT classica e introducendo uno spostamento di warping variabile lungo lo spessore della generica parete della sezione trasversale, garantisce perfetta coerenza tra la componente flessionale e tagliante della trave. E' mostrato, come tale riscrittura consente in maniera agevole di ricondursi alle teorie classiche di trave, anche deformabili a taglio. Inoltre, in tale contesto, è stata messa a punto una procedura di ricostruzione dello sforzo tridimensionale in grado ricostruire la parte reattiva delle componenti di tensioni dovuta al vincolamento interno proprio di un modello a cinematica ridotta. Sulla base di tali strumenti, è stato quindi proposto un approccio progettuale dedicato ai profili in classe 4, definito ESA (Embedded Stability Analysis), in grado di svolgere le verifiche coerentemente con quanto prescritto dalle normative vigenti. Viene infine presentata una procedura numerica per la progettazione di sistemi di copertura formati a freddo. Tale procedura permette di effettuare in pochi semplici passi il progetto dell'arcareccio e dei dettagli costruttivi relativi alla copertura.
Resumo:
Early-Type galaxies (ETGs) are embedded in hot (10^6-10^7 K), X-ray emitting gaseous haloes, produced mainly by stellar winds and heated by Type Ia supernovae explosions, by the thermalization of stellar motions and occasionally by the central super-massive black hole (SMBH). In particular, the thermalization of the stellar motions is due to the interaction between the stellar and the SNIa ejecta and the hot interstellar medium (ISM) already residing in the ETG. A number of different astrophysical phenomena determine the X-ray properties of the hot ISM, such as stellar population formation and evolution, galaxy structure and internal kinematics, Active Galactic Nuclei (AGN) presence, and environmental effects. With the aid of high-resolution hydrodynamical simulations performed on state-of-the-art galaxy models, in this Thesis we focus on the effects of galaxy shape, stellar kinematics and star formation on the evolution of the X-ray coronae of ETGs. Numerical simulations show that the relative importance of flattening and rotation are functions of the galaxy mass: at low galaxy masses, adding flattening and rotation induces a galactic wind, thus lowering the X-ray luminosity; at high galaxy masses the angular momentum conservation keeps the central regions of rotating galaxies at low density, whereas in non-rotating models a denser and brighter atmosphere is formed. The same dependence from the galaxy mass is present in the effects of star formation (SF): in light galaxies SF contributes to increase the spread in Lx, while at high galaxy masses the halo X-ray properties are marginally sensitive to SF effects. In every case, the star formation rate at the present epoch quite agrees with observations, and the massive, cold gaseous discs are partially or completely consumed by SF on a time-scale of few Gyr, excluding the presence of young stellar discs at the present epoch.
Resumo:
The aim of the present thesis was to investigate the influence of lower-limb joint models on musculoskeletal model predictions during gait. We started our analysis by using a baseline model, i.e., the state-of-the-art lower-limb model (spherical joint at the hip and hinge joints at the knee and ankle) created from MRI of a healthy subject in the Medical Technology Laboratory of the Rizzoli Orthopaedic Institute. We varied the models of knee and ankle joints, including: knee- and ankle joints with mean instantaneous axis of rotation, universal joint at the ankle, scaled-generic-derived planar knee, subject-specific planar knee model, subject-specific planar ankle model, spherical knee, spherical ankle. The joint model combinations corresponding to 10 musculoskeletal models were implemented into a typical inverse dynamics problem, including inverse kinematics, inverse dynamics, static optimization and joint reaction analysis algorithms solved using the OpenSim software to calculate joint angles, joint moments, muscle forces and activations, joint reaction forces during 5 walking trials. The predicted muscle activations were qualitatively compared to experimental EMG, to evaluate the accuracy of model predictions. Planar joint at the knee, universal joint at the ankle and spherical joints at the knee and at the ankle produced appreciable variations in model predictions during gait trials. The planar knee joint model reduced the discrepancy between the predicted activation of the Rectus Femoris and the EMG (with respect to the baseline model), and the reduced peak knee reaction force was considered more accurate. The use of the universal joint, with the introduction of the subtalar joint, worsened the muscle activation agreement with the EMG, and increased ankle and knee reaction forces were predicted. The spherical joints, in particular at the knee, worsened the muscle activation agreement with the EMG. A substantial increase of joint reaction forces at all joints was predicted despite of the good agreement in joint kinematics with those of the baseline model. The introduction of the universal joint had a negative effect on the model predictions. The cause of this discrepancy is likely to be found in the definition of the subtalar joint and thus, in the particular subject’s anthropometry, used to create the model and define the joint pose. We concluded that the implementation of complex joint models do not have marked effects on the joint reaction forces during gait. Computed results were similar in magnitude and in pattern to those reported in literature. Nonetheless, the introduction of planar joint model at the knee had positive effect upon the predictions, while the use of spherical joint at the knee and/or at the ankle is absolutely unadvisable, because it predicted unrealistic joint reaction forces.
Resumo:
Restoring a correct implant kinematics and providing a good ligament balance and patellar tracking is mandatory to improve clinical and functional outcome after a Total Knee Replacement. Surgical navigation systems are a reliable and accurate tool to help the surgeon in achieving these goals. The aim of the present study was to use navigation system with an intra-operative surgical protocol to evaluate and determine an optimal implant kinematics during a Total Knee Replacement.
Resumo:
Aim of this research is the development and validation of a comprehensive multibody motorcycle model featuring rigid-ring tires, taking into account both slope and roughness of road surfaces. A novel parametrization for the general kinematics of the motorcycle is proposed, using a mixed reference-point and relative-coordinates approach. The resulting description, developed in terms of dependent coordinates, makes it possible to efficiently include rigid-ring kinematics as well as road elevation and slope. The equations of motion for the multibody system are derived symbolically and the constraint equations arising from the dependent-coordinate formulation are handled using a projection technique. Therefore the resulting system of equations can be integrated in time domain using a standard ODE algorithm. The model is validated with respect to maneuvers experimentally measured on the race track, showing consistent results and excellent computational efficiency. More in detail, it is also capable of reproducing the chatter vibration of racing motorcycles. The chatter phenomenon, appearing during high speed cornering maneuvers, consists of a self-excited vertical oscillation of both the front and rear unsprung masses in the range of frequency between 17 and 22 Hz. A critical maneuver is numerically simulated, and a self-excited vibration appears, consistent with the experimentally measured chatter vibration. Finally, the driving mechanism for the self-excitation is highlighted and a physical interpretation is proposed.