952 resultados para HEAT-FLUX


Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are several heat and mass diffusion problems which affect to the IFC chamber design. New simulation models and experiments are needed to take into account the extreme conditions due to ignition pulses and neutron flux

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Actively Heated Fiber Optic (AHFO) method is shown to be capable of measuring soil water content several times per hour at 0.25 m spacing along cables of multiple kilometers in length. AHFO is based on distributed temperature sensing (DTS) observation of the heating and cooling of a buried fiber-optic cable resulting from an electrical impulse of energy delivered from the steel cable jacket. The results presented were collected from 750 m of cable buried in three 240 m colocated transects at 30, 60, and 90 cm depths in an agricultural field under center pivot irrigation. The calibration curve relating soil water content to the thermal response of the soil to a heat pulse of 10 W m−1 for 1 min duration was developed in the lab. This calibration was found applicable to the 30 and 60 cm depth cables, while the 90 cm depth cable illustrated the challenges presented by soil heterogeneity for this technique. This method was used to map with high resolution the variability of soil water content and fluxes induced by the nonuniformity of water application at the surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose - In many scientific and engineering fields, large-scale heat transfer problems with temperature-dependent pore-fluid densities are commonly encountered. For example, heat transfer from the mantle into the upper crust of the Earth is a typical problem of them. The main purpose of this paper is to develop and present a new combined methodology to solve large-scale heat transfer problems with temperature-dependent pore-fluid densities in the lithosphere and crust scales. Design/methodology/approach - The theoretical approach is used to determine the thickness and the related thermal boundary conditions of the continental crust on the lithospheric scale, so that some important information can be provided accurately for establishing a numerical model of the crustal scale. The numerical approach is then used to simulate the detailed structures and complicated geometries of the continental crust on the crustal scale. The main advantage in using the proposed combination method of the theoretical and numerical approaches is that if the thermal distribution in the crust is of the primary interest, the use of a reasonable numerical model on the crustal scale can result in a significant reduction in computer efforts. Findings - From the ore body formation and mineralization points of view, the present analytical and numerical solutions have demonstrated that the conductive-and-advective lithosphere with variable pore-fluid density is the most favorite lithosphere because it may result in the thinnest lithosphere so that the temperature at the near surface of the crust can be hot enough to generate the shallow ore deposits there. The upward throughflow (i.e. mantle mass flux) can have a significant effect on the thermal structure within the lithosphere. In addition, the emplacement of hot materials from the mantle may further reduce the thickness of the lithosphere. Originality/value - The present analytical solutions can be used to: validate numerical methods for solving large-scale heat transfer problems; provide correct thermal boundary conditions for numerically solving ore body formation and mineralization problems on the crustal scale; and investigate the fundamental issues related to thermal distributions within the lithosphere. The proposed finite element analysis can be effectively used to consider the geometrical and material complexities of large-scale heat transfer problems with temperature-dependent fluid densities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A theoretical model for the transport phenomena in an air gap membrane distillation is presented. The model is based on the conservation equations for the mass, momentum, energy and species within the feed water solution as well as on the mass and energy balances on the membrane sides. The slip flow occurs due to the hydrophobic properties of the membrane. The slip boundary condition applied on the feed saline solution-membrane interface is taken into consideration showing its effects on process parameters particularly permeate flow, heat transfer coefficient and thermal efficiency. The theoretical model was validated with available experimental data and was found to be in good agreement especially when the slip condition is introduced. Increasing slip length from zero to 200 μm was found to increase the permeate flux and the thermal efficiency by 33% and 1.7% respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Little is known of energy balance in low latitude wetlands where there is a year-round growing season and a climate best defined by wet and dry seasons. The Florida Everglades is a highly managed and extensive subtropical wetland that exerts a substantial influence on the hydrology and climate of the south Florida region. However, the effects of seasonality and active water management on energy balance in the Everglades ecosystem are poorly understood. An eddy covariance and micrometeorological tower was established in a short-hydroperiod Everglades marsh to examine the dominant environmental controls on sensible heat (H) and latent energy (LE) fluxes, as well as the effects of seasonality on these parameters. Seasonality differentially affected H and LE fluxes in this marsh, such that H was principally dominant in the dry season and LE was strongly dominant in the wet season. The Bowen ratio was high for much of the dry season (1.5–2.4), but relatively low (H and LE fluxes across nearly all seasons and years (). However, the 2009 dry season LE data were not consistent with this relationship () because of low seasonal variation in LE following a prolonged end to the previous wet season. In addition to net radiation, H and LE fluxes were significantly related to soil volumetric water content (VWC), water depth, air temperature, and occasionally vapor pressure deficit. Given that VWC and water depth were determined in part by water management decisions, it is clear that human actions have the ability to influence the mode of energy dissipation from this ecosystem. Impending modifications to water management under the Comprehensive Everglades Restoration Plan may shift the dominant turbulent flux from this ecosystem further toward LE, and this change will likely affect local hydrology and climate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The West African Monsoon (WAM) and its representation in numerical models are strongly influenced by the Saharan Heat Low (SHL), a low-pressure system driven by radiative heating over the central Sahara and ventilated by the cold and moist inflow from adjacent oceans. It has recently been shown that a significant part of the southerly moisture flux into the SHL originates from convective cold pools over the Sahel. These density currents driven by evaporation of rain are largely absent in models with parameterized convection. This crucial issue has been hypothesized to contribute to the inability of many climate models to reproduce the variability of the WAM. Here, the role of convective cold pools approaching the SHL from the Atlas Mountains, which are a strong orographic trigger for deep convection in Northwest Africa, is analyzed. Knowledge about the frequency of these events, as well as their impact on large-scale dynamics, is required to understand their contribution to the variability of the SHL and to known model uncertainties. The first aspect is addressed through the development of an objective and automated method for the generation of multi-year climatologies not available before. The algorithm combines freely available standard surface observations with satellite microwave data. Representativeness of stations and influence of their spatial density are addressed by comparison to a satellite-only climatology. Applying this algorithm to data from automated weather stations and manned synoptic stations in and south of the Atlas Mountains reveals the frequent occurrence. On the order of 6 events per month are detected from May to September when the SHL is in its northernmost position. The events tend to cluster into several-days long convectively active periods, often with strong events on consecutive days. This study is the first to diagnose dynamical impacts of such periods on the SHL, based on simulations of two example cases using the Weather Research and Forecast (WRF) model at convection-permitting resolution. Sensitivity experiments with artificially removed cold pools as well as different resolutions and parameterizations are conducted. Results indicate increases in surface pressure of more than 1 hPa and significant moisture transports into the desert over several days. This moisture affects radiative heating and thus the energy balance of the SHL. Even though cold pool events north of the SHL are less frequent when compared to their Sahelian counterparts, it is shown that they gain importance due to their temporal clustering on synoptic timescale. Together with studies focusing on the Sahel, this work emphasizes the need for improved parameterization schemes for deep convection in order to produce more reliable climate projections for the WAM.