965 resultados para Guanine Nucleotides


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Theoretical and empirical studies were conducted on the pattern of nucleotide and amino acid substitution in evolution, taking into account the effects of mutation at the nucleotide level and purifying selection at the amino acid level. A theoretical model for predicting the evolutionary change in electrophoretic mobility of a protein was also developed by using information on the pattern of amino acid substitution. The specific problems studied and the main results obtained are as follows: (1) Estimation of the pattern of nucleotide substitution in DNA nuclear genomes. The pattern of point mutations and nucleotide substitutions among the four different nucleotides are inferred from the evolutionary changes of pseudogenes and functional genes, respectively. Both patterns are non-random, the rate of change varying considerably with nucleotide pair, and that in both cases transitions occur somewhat more frequently than transversions. In protein evolution, substitution occurs more often between amino acids with similar physico-chemical properties than between dissimilar amino acids. (2) Estimation of the pattern of nucleotide substitution in RNA genomes. The majority of mutations in retroviruses accumulate at the reverse transcription stage. Selection at the amino acid level is very weak, and almost non-existent between synonymous codons. The pattern of mutation is very different from that in DNA genomes. Nevertheless, the pattern of purifying selection at the amino acid level is similar to that in DNA genomes, although selection intensity is much weaker. (3) Evaluation of the determinants of molecular evolutionary rates in protein-coding genes. Based on rates of nucleotide substitution for mammalian genes, the rate of amino acid substitution of a protein is determined by its amino acid composition. The content of glycine is shown to correlate strongly and negatively with the rate of substitution. Empirical formulae, called indices of mutability, are developed in order to predict the rate of molecular evolution of a protein from data on its amino acid sequence. (4) Studies on the evolutionary patterns of electrophoretic mobility of proteins. A theoretical model was constructed that predicts the electric charge of a protein at any given pH and its isoelectric point from data on its primary and quaternary structures. Using this model, the evolutionary change in electrophoretic mobilities of different proteins and the expected amount of electrophoretically hidden genetic variation were studied. In the absence of selection for the pI value, proteins will on the average evolve toward a mildly basic pI. (Abstract shortened with permission of author.) ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human behavior appears to be regulated in part by noradrenergic transmission since antidepressant drugs modify the number and function of (beta)-adrenergic receptors in the central nervous system. Affective illness is also known to be associated with the endocrine system, particularly the hypothalamic-pituitary-adrenal axis. The aim of the present study was to determine whether hormones, in particular adrencorticotrophin (ACTH) and corticosterone, may influence behavior by regulating brain noradrenergic receptor function.^ Chronic treatment with ACTH accelerated the increase or decrease in rat brain (beta)-adrenergic receptor number induced by a lesion of the dorsal noradrenergic bundle or treatment with the antidepressant imipramine. Chronic administration of ACTH alone had no effect on (beta)-receptor number although it reduced norepinephrine stimulated cyclic AMP accumulation in brain slices. Treatment with imipramine also reduced the cyclic AMP response to norepinephrine but was accompanied by a decrease in (beta)-adrenergic receptor number. Both the imipramine and ACTH treatments reduced the affinity of (beta)-adrenergic receptors for norepinephrine, but only the antidepressant modified the potency of the neurotransmitter to stimulate second messenger production. Neither ACTH nor imipramine treatment altered Gpp(NH)p- or fluoride-stimulated adenylate cyclase, cyclic AMP, cyclic GMP, or cyclic GMP-stimulated cyclic AMP phosphodiesterase, or the activity of the guanine nucleotide binding protein (Gs). These findings suggested that post-receptor components of the cyclic nucleotide generating system are not influenced by the hormone or antidepressant. This conclusion was verified by the finding that neither treatment altered adenosine-stimulated cyclic AMP accumulation in brain tissue.^ A detailed examination of the (alpha)- and (beta)-adrenergic receptor components of norepinephrine-stimulated cyclic AMP production revealed that ACTH, but not imipramine, administration reduced the contribution of the (alpha)-receptor mediated response. Like ACTH treatment, corticosterone diminished the (alpha)-adrenergic component indicating that adrenal steroids probably mediate the neurochemical responses to ACTH administration. The data indicate that adrenal steroids and antidepressants decrease noradrenergic receptor function by selectively modifying the (alpha)- and (beta)-receptor components. The functional similarity in the action of the steroid and antidepressants suggests that adrenal hormones normally contribute to the maintenance of receptor systems which regulate affective behavior in man. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, it has become apparent that DNA repair mechanisms are involved in the malignant progression and resistance to therapy of gliomas. Many investigators have shown that increased levels of O6-methyl guanine DNA alkyltransferase, a DNA monoalkyl adduct repair enzyme, are correlated with resistance of malignant glioma cell lines to nitrosourea-based chemotherapy. Three important DNA excision repair genes ERCC1 (excision repair cross complementation group 1), ERCC2 (excision repair cross complementation group 2), and ERCC6 (excision repair cross complementation group 6) have been studied in human tumors. Gene copy number variation of ERCC1 and ERCC2 has been observed in primary glioma tissues. A number of reports describing a relationship between ERCC1 gene alterations and resistance to anti-cancer drugs have been also described. The levels of ERCC1 gene expression, however, have not been correlated with drug resistance in gliomas. The expression of ERCC6 gene transcribes has been shown to vary with tissue types and to be highest in the brain. There have been no comprehensive studies so far, however, of ERCC6 gene expression and molecular alterations in malignant glioma. This project examined the ERCC1 expression levels and correlated them with cisplatin resistance in malignant glioma cell lines. We also examined the molecular alterations of ERCC6 gene in primary glioma tissues and cells and analyzed whether these alterations are related to tumor progression and chemotherapy resistance. Our results indicate the presence of mutations and/or deletions in exons II and V of the ERCC6 gene, and these alterations are more frequent in exon II. Furthermore, the mutations and/or deletions in exon II were shown to be associated with increased malignant grade of gliomas. The results on the Levels of ERCC1 gene transcripts showed that expression levels correlate with cisplatin resistance. The increase in ERCC1 mRNA induced by cisplatin could be down-regulated by cyclosporin A and herbimycin A. The results of this study are likely to provide useful information for clinical treatment of human gliomas. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In many organisms, polarity of the oocyte is established post-transcriptionally via subcellular RNA localization. Many RNAs are localized during oogenesis in Xenopus laevis, including Xlsirts ( Xenopus laevis short interspersed repeat transcripts) [Kloc, 1993]. Xlsirts constitute a large family defined by highly homologous repeat units 79–81 nucleotides in length. Endogenous Xlsirt RNAs use the METRO (Message Transport Organizer) pathway of localization, where RNAs are transported from the nucleus to the mitochondrial cloud in stage I oocytes. Secondly, RNAs anchor at the vegetal pole in stage II oocytes. Exogenous Xlsirt RNAs can also utilize the Late pathway of localization, which involves localization to the vegetal cortex during stage III of oogenesis and results in RNAs anchored in the cortex of the entire vegetal hemisphere. ^ The Xlsirts localization signal is contained within the repeat region. This study was designed to test the hypothesis that there are cis -acting localization elements in Xlsirts, and that higher order structure plays a role. Results of experiments on Xlsirt P11, a 1700 basepair (bp) family member, led to the conclusion that a 137-bp fragment of the repetitive region is necessary and sufficient for METRO and Late pathway localization. This analysis definitively demonstrates that the Xlsirt localization signal for the METRO and Late pathways reside within the repetitive region and not within the flanking regions. Analysis of Xlsirt linker scanning mutations revealed two METRO-pathway specific subelements, and one Late-pathway specific subelement. Functional, computer, and biochemical evidence relates the higher order structure of this element to its ability to function as a localization element. ^ Xlsirt 137 is 99% identical to the Xlsirt consensus sequence identified in this study, suggesting that it is the localization element for all localized Xlsirt family members. The repeat unit was reframed based on function, rather than arbitrarily based on sequence. This work supports the hypothesis presented in 1981 by George Spohr, who originally isolated the Xlsirts, which stated that the highly conserved repetitive elements must be constrained from variability due to some unknown function of the repeats themselves. These studies shed light on the mechanism of RNA localization, linking structure and function. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cellular migration is essential to many normal cellular processes. In tumor cells, aberrant activation of the normal pathways regulating migration is one of the critical steps in the development of metastasis. Previously, I demonstrated for the first time that overexpression of Tiam1, a guanine nucleotide exchange factor (GNEF) for small G proteins in the Rho family, could alter migration in colorectal tumor cells. ^ This dissertation focuses on the roles of Tiam1 in promoting cell migration, survival, and metastasis of colorectal carcinoma cells, utilizing the model system I developed. To determine the in vivo phenotype of the migratory cell lines, athymic nude mice were injected with cells into the orthotopic site. Several of the mice injected with cells of increased migratory potential had metastases. Thus, the in vitro selection for increased migration resulted in increased metastatic potential in vivo, and therefore, the Tiam1-overexpressing cells provide a model to examine signal transduction pathways important to this process. ^ To examine effects of Tiam1 signaling on small G proteins critical to cellular functions associated with migration, I examined the activation status of the small G proteins Rac, Rho, and Cdc42. The cells of increased migratory potential have increased GTP-bound Rac and Rho, compared to control SW480 cells. Cells that overexpress Tiam1 are more migratory and are resistant to detachment-induced death, or anoikis. To determine which effects and phenotypes were Tiam1-specific, we utilized siRNA to downregulate Tiam1 expression. These results demonstrate that Tiam1 is sufficient but not required for the migration of colorectal carcinoma cells in our model system, and that the biologically selected cells have additional changes that promote migration besides the increase in Tiam1. I also show that Tiam1 protects colorectal carcinoma cells from detachment-induced death, but is not required for anoikis resistance in the biologically selected migratory cells. ^ In summary, my studies demonstrate a heretofore-unknown regulator of phenotypes critical to the development of colorectal carcinoma metastases, overexpression of Tiam1. Understanding the mechanism by which Tiam1 contributes to cellular migration and metastasis is crucial to developing desperately needed new therapies for colorectal carcinoma. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microarray technology is a high-throughput method for genotyping and gene expression profiling. Limited sensitivity and specificity are one of the essential problems for this technology. Most of existing methods of microarray data analysis have an apparent limitation for they merely deal with the numerical part of microarray data and have made little use of gene sequence information. Because it's the gene sequences that precisely define the physical objects being measured by a microarray, it is natural to make the gene sequences an essential part of the data analysis. This dissertation focused on the development of free energy models to integrate sequence information in microarray data analysis. The models were used to characterize the mechanism of hybridization on microarrays and enhance sensitivity and specificity of microarray measurements. ^ Cross-hybridization is a major obstacle factor for the sensitivity and specificity of microarray measurements. In this dissertation, we evaluated the scope of cross-hybridization problem on short-oligo microarrays. The results showed that cross hybridization on arrays is mostly caused by oligo fragments with a run of 10 to 16 nucleotides complementary to the probes. Furthermore, a free-energy based model was proposed to quantify the amount of cross-hybridization signal on each probe. This model treats cross-hybridization as an integral effect of the interactions between a probe and various off-target oligo fragments. Using public spike-in datasets, the model showed high accuracy in predicting the cross-hybridization signals on those probes whose intended targets are absent in the sample. ^ Several prospective models were proposed to improve Positional Dependent Nearest-Neighbor (PDNN) model for better quantification of gene expression and cross-hybridization. ^ The problem addressed in this dissertation is fundamental to the microarray technology. We expect that this study will help us to understand the detailed mechanism that determines sensitivity and specificity on the microarrays. Consequently, this research will have a wide impact on how microarrays are designed and how the data are interpreted. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

GS-9219 is a cell-permeable double-prodrug of the acyclic nucleotide analogue 9-(2-phosphonylmethoxyethyl)guanine (PMEG). The conversion of GS-9219 to its active metabolite, PMEG diphosphate (PMEGpp), involves several intracellular enzymatic reactions which reduces the concentration of nephrotoxic PMEG in plasma. PMEGpp competes with the natural substrate, dGTP, for incorporation by DNA polymerases. The lack of a 3'-hydroxyl moiety makes PMEGpp a de facto DNA chain-terminator. The incorporation of PMEGpp into DNA during DNA replication causes DNA chain-termination and stalled replication forks. Thus, the primary mechanism of action of GS-9219 in replicating cells is via DNA synthesis inhibition. GS-9219 has substantial antiproliferative activity against activated lymphocytes and tumor cell lines of hematological malignancies. Tumor cell proliferation was significantly reduced as measured by PET/CT scans in dogs with advanced-stage, spontaneously occurring non-Hodgkin's lymphoma (NHL).^ The hypothesis of this dissertation is that the incorporation of PMEGpp into DNA during repair re-synthesis would result in the inhibition of DNA repair and accumulation of DNA damage in chronic lymphocytic leukemia (CLL) cells and activate signaling pathways to cell death.^ To test this hypothesis, CLL cells were treated with DNA-damaging agents to stimulate nucleotide excision repair (NER) pathways, enabling the incorporation of PMEGpp into DNA. When NER was activated by UV, PMEGpp was incorporated into DNA in CLL cells. Following PMEGpp incorporation, DNA repair was inhibited and led to the accumulation of DNA strand breaks. The combination of GS-9219 and DNA-damaging agents resulted in more cell death than the sum of the single agents alone. The presence of DNA strand breaks activated the phosphatidylinositol 3-kinase-like protein kinase (PIKK) family members ataxia-telangiectasia mutated (ATM) and DNA-dependent protein kinase (DNA-PK). The activated ATM initiated signaling to the downstream target, p53, which was subsequently phosphorylated and accumulated to exert its apoptotic functions. P53-targeted pro-apoptotic genes, Puma and Bax, were upregulated and activated when DNA repair was inhibited, likely contributing to cell death. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Activation of Rho family small G proteins is thought to be a critical event in breast cancer development and metastatic progression. Rho protein activation is stimulated by a family of enzymes known as guanine nucleotide exchange factors (Rho GEFs). The neuroepithelioma transforming gene 1 (Net1) is a Rho GEF specific for the RhoA subfamily that is overexpressed in primary breast tumors and breast cancer cell lines. Net1 isoform expression is also required for migration and invasion of breast cancer cells in vitro. These data indicate that Net1 may be a critical regulator of metastatic progression in breast cancer. Net1 activity is negatively regulated by sequestration in the nucleus, and relocalization of Net1 outside the nucleus is required to stimulate RhoA activation, actin cytoskeletal reorganization, and oncogenic transformation. However, regulatory mechanisms controlling the extranuclear localization of Net1 have not been identified. In this study, we have addressed the regulation of Net1A isoform localization by Rac1. Specifically, co-expression of constitutively active Rac1 with Net1A stimulates the relocalization of Net1A from the nucleus to the plasma membrane in breast cancer cells, and results in Net1A activation. Importantly, Net1A localization is also driven by endogenous Rac1 activity. Net1A relocalizes outside the nucleus in cells spreading on collagen, and when endogenous Rac1 expression was silenced by siRNA, Net1A remained nuclear in spreading cells. These data indicate that Rac1 controls the localization of the Net1A isoform and suggests a physiological role for Net1A in breast cancer cell adhesion and motility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gemcitabine is a potent nucleoside analogue against solid tumors however drug resistance rapidly emerges. Removal of gemcitabine incorporated in the DNA by repair mechanisms could potentially contribute to resistance in chemo-refractory solid tumors. In this study, we evaluated homologous recombination repair of gemcitabine-stalled replication forks as a potential mechanism contributing to resistance. We also studied the effect of hyperthermia on homologous recombination pathway to explain the previously reported synergy between gemcitabine and hyperthermia. We found that hyperthermia degrades and inhibits localization of Mre11 to gemcitabine-stalled replication forks. Furthermore, gemcitabine-treated cells that were also treated with hyperthermia demonstrate a prolonged passage through late S/ G2 phase of cell cycle in comparison to cells treated with gemcitabine alone. This coincides with inhibition of resolution of γH2AX foci. Our findings also demonstrate that thermal sensitization of human hepatocellular carcinoma cell lines to gemcitabine is mediated through an Mre11-dependent homologous recombination repair pathway. Combination of non-invasive radiofrequency field-induced hyperthermia and gemcitabine was superior to either therapy alone (p

Relevância:

10.00% 10.00%

Publicador:

Resumo:

I-compounds are newly discovered covalent DNA modifications detected by the $\sp{32}$P-postlabeling assay. They are age-dependent, tissue-specific and sex-different. The origin(s), chemistry and function(s) of I-compounds are unknown. The total level of I-compounds in 8-10 month old rat liver is 1 adduct in 10$\sp7$ nucleotides, which is not neglectable. It is proposed that I-compounds may play a role in spontaneous tumorigenesis and aging.^ In the present project, I-compounds were investigated by several different approaches. (1) Dietary modulation of I-compounds. (2) Comparison of I-compounds with persistent carcinogen DNA adducts and 5-methylcytosine. (3) Strain differences of I-compounds in relation to organ site spontaneous tumorigenesis. (4) Effects of nongenotoxic hepatocarcinogenes on I-compounds.^ It was demonstrated that the formation of I-compounds is diet-related. Rats fed natural ingredient diet exhibited more complex I-spot patterns and much higher levels than rats fed purified diet. Variation of major nutrients (carbohydrate, protein and fat) in the diet, produced quantitative differences in I-compounds of rat liver and kidney DNAs. Physiological level of vitamin E in the diet reduced intensity of one I-spot compared with vitamin E deficient diet. However, extremely high level of vitamin E in the diet gave extra spot and enhanced the intensities of some I-spots.^ In regenerating rat liver, I-compounds levels were reduced, as carcinogen DNA adducts, but not 5-methylcytosine, i.e. a normal DNA modification.^ Animals with higher incidences of spontaneous tumor or degenerative diseases tended to have a lower level of I-compounds.^ Choline devoid diet induced a drastic reduction of I-compound level in rat liver compared with choline supplemented diet. I-compound levels were reduced after multi-doses of carbon tetrachloride (CCl$\sb4$) exposure in rats and single dose exposure in mice. An inverse relationship was observed between I-compound level and DNA replication rate. CCl$\sb4$-related DNA adduct was detected in mice liver and intensities of some I-spots were enhanced 24 h after a single dose exposure.^ The mechanisms and explanations of these observations will be discussed. I-compounds are potentially useful indicators in carcinogenesis studies. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transglutaminases are a family of enzymes that catalyze the covalent cross-linking of proteins through the formation of $\varepsilon$-($\gamma$-glutaminyl)-lysyl isopeptide bonds. Tissue transglutaminase (Tgase) is an intracellular enzyme which is expressed in terminally differentiated and senescent cells and also in cells undergoing apoptotic cell death. To characterize this enzyme and examine its relationship with other members of the transglutaminase family, cDNAs, the first two exons of the gene and 2 kb of the 5$\sp\prime$ flanking region, including the promoter, were isolated. The full length Tgase transcript consists of 66 bp of 5$\sp\prime$-UTR (untranslated) sequence, an open reading frame which encodes 686 amino acids and 1400 bp of 3$\sp\prime$-UTR sequence. Alignment of the deduced Tgase protein sequence with that of other transglutaminases revealed regions of strong homology, particularly in the active site region.^ The Tgase cDNA was used to isolate and characterize a genomic clone encompassing the 5$\sp\prime$ end of the mouse Tgase gene. The transcription start site was defined using genomic and cDNA clones coupled with S1 protection analysis and anchored PCR. This clone includes 2.3 kb upstream of the transcription start site and two exons that contain the first 256 nucleotides of the mouse Tgase cDNA sequence. The exon intron boundaries have been mapped and compared with the exon intron boundaries of three members of the transglutaminase family: human factor XIIIa, the human keratinocyte transglutaminase and human erythrocyte band 4.1. Tissue Tgase exon II is similar to comparable exons of these genes. However, exon I bears no resemblance with any of the other transglutaminase amino terminus exons.^ Previous work in our laboratory has shown that the transcription of the Tgase gene is directly controlled by retinoic acid and retinoic acid receptors. To identify the region of the Tgase gene responsible for regulating its expression, fragments of the Tgase promoter and 5$\sp\prime$-flanking region were cloned into the chloramphenicol actetyl transferase (CAT) reporter constructs. Transient transfection experiments with these constructs demonstrated that the upstream region of Tgase is a functional promoter which contains a retinoid response element within a 1573 nucleotide region spanning nucleotides $-$252 to $-$1825. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

p53 is a tumor suppressor gene that is the most frequent target inactivated in cancers. Overexpression of wild-type p53 in rat embryo fibroblasts suppresses foci formation by other cooperating oncogenes. Introduction of wild-type p53 into cells that lack p53 arrests them at the G1/S boundary and reverses the transformed phenotype of some cells. The function of p53 in normal cells is illustrated by the ability of p53 to arrest cells at G1 phase of the cell cycle upon exposure to DNA-damaging agents including UV-irradiation and biosynthesis inhibitors.^ Since the amino acid sequence of p53 suggested that it may function as a transcription factor, we used GAL4 fusion assays to test that possibility. We found that wild-type p53 could specifically activate transcription when anchored by the GAL4 DNA binding domain. Mutant p53s, which have lost the ability to suppress foci formation by other oncogenes, were not able to activate transcription in this assay. Thus, we established a direct correlation between the tumor suppression and transactivation functions of p53.^ Having learned that p53 was a transcriptional activator, we next sought targets of p53 activation. Because many transcription factors regulate their own expression, we tested whether p53 had this autoregulatory property. Transient expression of wild-type p53 in cells increased the levels of endogenous p53 mRNA. Cotransfection of p53 together with a reporter bearing the p53 promoter confirmed that wild-type p53 specifically activates its own promoter. Deletion analysis from both the 5$\sp\prime$ and 3$\sp\prime$ ends of the promoter minimized the region responsible for p53 autoregulation to 45 bp. Methylation interference identified nucleotides involved in protein-DNA interaction. Mutations within this protected site specifically eliminated the response of the promoter to p53. In addition, multiple copies of this element confer responsiveness to wild-type p53 expression. Thus, we identified a F53 responsive element within the p53 promoter.^ The presence of a consensus NF-$\kappa$B site in the p53 promoter suggested that NF-KB may regulate p53 expression. Gel-shift experiments showed that both the p50 homodimer and the p50/p65 heterodimer bind to the p53 promoter. In addition, the p65 subunit of NF-$\kappa$B activates the p53 promoter in transient transfection experiments. TNF $\alpha$, a natural NF-$\kappa$B inducer, also activates the p53 promoter. Both p65 activation and TNF $\alpha$ induction require an intact NF-$\kappa$B site in the p53 promoter. Since NF-$\kappa$B activation occurs as a response to stress and p53 arrests cells in G1/S, where DNA repair occurs, activation of p53 by NF-$\kappa$B could be a mechanism by which cells recover from stress.^ In conclusion, we provided the first data that wild-type p53 functions as a transcriptional activator, whereas mutant p53 cannot. The correlation between growth suppression and transcriptional activation by p53 implies a pathway of tumor suppression. We have analyzed upstream components of the pathway by the identification of both p53 and NF-$\kappa$B as regulators of the p53 promoter. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this work was to examine the possible mechanisms for the regulation of cytochrome c gene expression in response to increased contractile activity in rat skeletal muscle. The working hypothesis was that increased contractile activity enhances cytochrome c gene expression through a cis-element. A 110% increase in cytochrome c mRNA concentration was observed in tibialis anterior (TA) muscle after 9 days of chronic stimulation. Similar difference (120%) exists between soleus (SO) muscle of higher contractile activity and white vastus lateralis (WV) muscle of lower contractile activity. These results suggest that the endogenous cytochrome c gene expression is regulated by contractile activity. Cytochrome c-reporter genes were injected into skeletal muscles to identify the cis-element that is responsible for the regulation. Although the data was inconclusive, part of it suggested the importance of the 3$\sp\prime$-untranslated region (3$\sp\prime$-UTR) in mediating the response to increased contractile activity.^ RNA gel mobility shift (GMSA) and ultraviolet (UV) cross-linking assays revealed specific RNA-protein interaction in a 50-nucleotide region of the 3$\sp\prime$-UTR in unstimulated TA muscle. Computer analysis predicted a stem-loop structure of 17 nucleotides, which provides a structural basis for RNA-protein interaction. These 17 nucleotides are 100% conserved among rat, mouse and human cytochrome c genes and their 13 pseudogenes, suggesting a functional role for this region. The RNA-protein interaction was significantly less in highly active SO muscle than in inactive WV muscle and was dramatically decreased in stimulated TA muscle due to a protein inhibitor(s) associated with ribosome. It is possible that cytochrome c mRNAs undergoing translation are subject to a compartmentalized regulatory influence.^ The conclusion from these results is that increases in contractile activity induce or activate a protein inhibitor(s) associated with ribosome in rat skeletal muscle. The inhibitor decreases RNA-protein interaction in the 3$\sp\prime$-UTR of cytochrome c mRNA, which may result in increased mRNA stability and/or translation. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our laboratory has developed and partially characterized a strain of New Zealand white rabbits that are resistant to the hypercholesterolemia which typically occurs in normal rabbits when fed a cholesterol-enriched diet. This phenotype is most likely attributed to an increase in bile acid excretion by hypercholesterolemia-resistant (CRT) rabbits as a result of elevated enzyme activity of cholesterol 7$\alpha$-hydroxylase (C7$\alpha$H), the rate-limiting enzyme in bile acid synthesis. Northern analysis revealed that CRT rabbits, in comparison to normal rabbits, have a 7-fold greater steady-state C7$\alpha$H mRNA levels irrespective of dietary regimen. The C7$\alpha$H gene in both phenotypes was determined to be a single copy gene. The hypothesis was that the elevated C7$\alpha$H mRNA levels in CRT rabbits, in comparison to normal animals, was due to an increase in the transcription rate of the C7$\alpha$H gene as a result of a mutation in a cis-acting element and/or a trans-acting factor within the hepatocyte. To isolate the C7$\alpha$H gene from both normal and CRT rabbits, genomic libraries were prepared from both phenotypes into $\lambda$GEM12 vectors using conventional techniques. Three CRT and one normal phage clones that contained the C7$\alpha$H gene were identified by screening the library with a series of probes located within different exons of the C7$\alpha$H cDNA. Sequencing analysis confirmed that approximately 1100 bp of the C7$\alpha$H 5'-flanking region from both normal and CRT phenotypes was identical. The increase in C7$\alpha$H mRNA levels was not attributed to a cis-acting mutation within this region. Liver nuclear extracts were prepared from normal and CRT rabbits maintained either on a basal or 0.25% cholesterol-enriched diet and incubated with several radiolabeled DNA fragments from the C7$\alpha$H gene. A 37 basepair region, located between nucleotides $-$452 to $-$416 was identified that had altered binding patterns between normal and CRT rabbits as a function of diet. Two additional regions, $-$747 to $-$575 and $-$580 to $-$442, produced banding patterns which were identical, irrespective of phenotype or diet. In conclusion, these studies suggested that the increase in C7$\alpha$H mRNA in CRT rabbits was due to differences in binding of a cholesterol-responsive transcription factor to the C7$\alpha$H promoter. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Like other simple retroviruses the murine sarcoma virus ts110 (MuSVts110) displays an inefficient mode of genome splicing. But, unlike the splicing phenotypic of other retroviruses, the splicing event effected upon the transcript of MuSVts110 is temperature sensitive. Previous work in this laboratory has established that the conditionally defective nature of MuSVts110 RNA splicing is mediated in cis by features in the viral transcript. Here we show that the 5$\sp\prime$ splice site of the MuSVts110 transcript acts as a point of control of the overall splicing efficiency at both permissive and nonpermissive temperatures for splicing. We strengthened and simultaneously weakened the nucleotide structure of the 5$\sp\prime$ splice site in an attempt to elucidate the differential effects each of the two known critical splicing components which interact with the 5$\sp\prime$ splice site have on the overall efficiency of intron excision. We found that a transversion of the sixth nucleotide, resulting in the formation of a near-consensus 5$\sp\prime$ splice site, dramatically increased the overall efficiency of MuSVts110 RNA splicing and abrogated the thermosensitive nature of this splicing event. Various secondary mutations within this original transversion mutant, designed to selectively decrease specific splicing component interactions, lead to recovery of inefficient and thermosensitive splicing. We have further shown that a sequence of 415 nucleotides lying in the downstream exon of the viral RNA and hypothesized to act as an element in the temperature-dependent inhibition of splicing displays a functional redundancy throughout its length; loss and/or replacement of any one sequence of 100 nucleotides within this sequence does not, with one exception detailed below, diminish the degree to which MuSVts110 RNA is inhibited to splice at the restrictive temperature. One specific deletion, though, fortuitously juxtaposed and activated cryptic consensus splicing signals for the excision of a cryptic intron within the downstream exon and markedly potentiated--across a newly defined cryptic exon--the splicing event effected upon the upstream, native intron. We have exploited this mutant of MuSVts110 to further an understanding of the process of exon definition and intron definition and show that the polypyrimidine tract and consensus 3$\sp\prime$ splice site, as well as the 5$\sp\prime$ splice site, within the intron at the 3$\sp\prime$ flank of the defined exon are required for the exon's definition; implying that definition of the downstream intron is required for the in vivo definition of the proximal, upstream exon. Finally; we have shown, through the construction of heterologous mutants of MuSVts110 employing a foreign 3$\sp\prime$ end-forming sequence, that efficiency of transcript splicing can be increased--to a degree which abrogates its thermosensitive nature--in direct proportion to increasing proximity of the 3$\sp\prime$ end-forming signal to the terminal 3$\sp\prime$ splice site. ^