994 resultados para Google Earth Engine


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Includes index.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cover title.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seven plans on folded leaves attached inside back cover.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photocopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2d ed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photoprinted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Big Data Analytics is an emerging field since massive storage and computing capabilities have been made available by advanced e-infrastructures. Earth and Environmental sciences are likely to benefit from Big Data Analytics techniques supporting the processing of the large number of Earth Observation datasets currently acquired and generated through observations and simulations. However, Earth Science data and applications present specificities in terms of relevance of the geospatial information, wide heterogeneity of data models and formats, and complexity of processing. Therefore, Big Earth Data Analytics requires specifically tailored techniques and tools. The EarthServer Big Earth Data Analytics engine offers a solution for coverage-type datasets, built around a high performance array database technology, and the adoption and enhancement of standards for service interaction (OGC WCS and WCPS). The EarthServer solution, led by the collection of requirements from scientific communities and international initiatives, provides a holistic approach that ranges from query languages and scalability up to mobile access and visualization. The result is demonstrated and validated through the development of lighthouse applications in the Marine, Geology, Atmospheric, Planetary and Cryospheric science domains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Big Data Analytics is an emerging field since massive storage and computing capabilities have been made available by advanced e-infrastructures. Earth and Environmental sciences are likely to benefit from Big Data Analytics techniques supporting the processing of the large number of Earth Observation datasets currently acquired and generated through observations and simulations. However, Earth Science data and applications present specificities in terms of relevance of the geospatial information, wide heterogeneity of data models and formats, and complexity of processing. Therefore, Big Earth Data Analytics requires specifically tailored techniques and tools. The EarthServer Big Earth Data Analytics engine offers a solution for coverage-type datasets, built around a high performance array database technology, and the adoption and enhancement of standards for service interaction (OGC WCS and WCPS). The EarthServer solution, led by the collection of requirements from scientific communities and international initiatives, provides a holistic approach that ranges from query languages and scalability up to mobile access and visualization. The result is demonstrated and validated through the development of lighthouse applications in the Marine, Geology, Atmospheric, Planetary and Cryospheric science domains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"Designed for children" -- t.p.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fino a pochi anni fa, usare i trasporti pubblici poteva essere fonte di confusione e richiedere la comprensione del sistema dei trasporti locali. Più tardi, con la diffusione di dispositivi con localizzazione GPS, reti dati cellulare e Google Maps (inizialmente Google Transit), tutto è cambiato, rendendo possibile la pianificazione di un viaggio mentre si è fuori casa. Nonostante Google Maps disponga di indicazioni stradali più o meno in tutto il mondo e mostri molte informazioni, alcune funzionalità, come l’integrazione degli orari in tempo reale, non sono disponibili in tutte le città, ma sono basate su accordi con le agenzie dei trasporti locali. GoGoBus è un’applicazione Android per l’ausilio al trasporto nella città di Bologna. Combinando diversi servizi, GoGoBus si rivolge a svariati tipi di utilizzatori: offre la pianificazione per i meno pratici del sistema e coloro che usano i trasporti pubblici raramente, dispone di orari in tempo reale per chi usa i mezzi frequentemente, e in più traccia la posizione dell’autobus, ha un supporto vocale e un’interfaccia semplice per persone con disabilità. Progettata appositamente per ipovedenti, l’aspetto più innovativo dell’applicazione è il suo supporto durante il percorso sull’autobus, integrato alla pianificazione del tragitto e agli orari aggiornati in tempo reale. Il sistema traccia la posizione dell’autobus attraverso il GPS del dispositivo mobile, la cui posizione è usata sia per riconoscere quando una fermata viene superata, sia per mostrare informazioni utili come la distanza dalla prossima fermata, il numero di fermate e i minuti rimanenti prima di scendere, e soprattutto notificare l’utente quando deve scendere. L’idea dietro GoGoBus è incrementare la fruibilità dei trasporti pubblici per non vedenti, ma anche per persone che li usano di rado, aumentando ampiamente la loro indipendenza, allo stesso tempo migliorando la qualità del servizio per chi usa i mezzi quotidianamente.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work aims at the geochemical study of Pitinga cryolite mineralization through REE and Y analyses in disseminated and massive cryolite ore deposits, as well as in fluorite occurrences. REE signatures in fluorite and cryolite are similar to those in the Madeira albite granite. The highest ΣREE values are found in magmatic cryolite (677 to 1345 ppm); ΣREE is lower in massive cryolite. Average values for the different cryolite types are 10.3 ppm, 6.66 ppm and 8.38 ppm (for nucleated, caramel and white types, respectively). Disseminated fluorite displays higher ΣREE values (1708 and 1526ppm) than fluorite in late veins(34.81ppm). Yttrium concentration is higher in disseminated fluorite and in magmatic cryolite. The evolution of several parameters (REEtotal, LREE/HREE, Y) was followed throughout successive stages of evolution in albite granites and associated mineralization. At the end of the process, late cryolite was formed with low REEtotal content. REE data indicate that the MCD was formed by, and the disseminated ore enriched by (additional formation of hydrothermal disseminated cryolite), hydrothermal fluids, residual from albite granite. The presence of tetrads is poorly defined, although nucleated, caramel and white cryolite types show evidence for tetrad effect.